期刊文献+

基于改进细菌觅食算法的摩擦参数辨识方法 被引量:1

Parameter Identification of LuGre Friction Model Based on Improved Bacterial Foraging Optimization
下载PDF
导出
摘要 采用LuGre摩擦模型的前馈补偿可抑制非线性摩擦力的影响,提高伺服系统的低速性能。但LuGre摩擦模型高度非线性,动态参数难以准确获取,降低了摩擦补偿的效果。提出一种基于改进细菌觅食算法的LuGre摩擦模型参数辨识方法,引入自适应步长方法以提高动态参数的辨识精度和收敛速度。在MATLAB中实现了该算法,进行了参数辨识,证明该参数辨识方法能获得较高的辨识精度。在MATLAB/Simulink中搭建了伺服电机仿真模型,使用辨识结果进行了摩擦补偿效果验证,仿真结果证明了该方法的有效性。 The feedforward compensation using the LuGre friction model could suppress the influence of nonlinear friction and improved the low-speed performance of the servo system.However,the LuGre friction model was highly nonlinear,and the dynamic parameters were difficult to obtain accurately,which reduced the effect of friction compensation.A LuGre friction model parameter identification method based on an improved bacterial foraging optimization was proposed,and an adaptive step size method was introduced to improve the identification accuracy and convergence speed of dynamic parameters.The proposed optimization was implemented in MATLAB,and parameter identification was carried out,which proved that the proposed parameter identification method could obtain higher identification accuracy.A servo motor simulation model is built in MATLAB/Simulink,and the friction compensation effect was verified by using the identification results.The simulation results prove the effectiveness of the proposed method.
作者 周昊玥 张建忠 ZHOU Haoyue;ZHANG Jianzhong(School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处 《微特电机》 2022年第6期31-35,共5页 Small & Special Electrical Machines
关键词 摩擦补偿 LuGre摩擦模型 改进细菌觅食算法 参数辨识 friction compensation LuGre friction model improved bacterial foraging optimization(IBFO) parameter identification
  • 相关文献

参考文献6

二级参考文献140

  • 1郭健,季晶晶,杨帆,姚斌.基于LuGre摩擦模型的伺服系统自适应鲁棒控制器[J].南京理工大学学报,2013,37(6):779-784. 被引量:7
  • 2Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China).Adaptive RBF neural network control of robot with actuator nonlinearities[J].控制理论与应用(英文版),2010,8(2):249-256. 被引量:6
  • 3王永富,柴天佑.一种补偿动态摩擦的自适应模糊控制方法[J].中国电机工程学报,2005,25(2):139-143. 被引量:20
  • 4王永富,柴天佑.机器人关节摩擦的自适应模糊补偿建模与控制[J].仪器仪表学报,2006,27(2):186-190. 被引量:11
  • 5Kim D H,Cho C H.Bacterial foraging based neural network fuzzy learning[C] //IICAI 2005,2005:2030-2036.
  • 6Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis[C] /International Conference on Computational Intelligonce and Multimedia Applications.Los Alamitos:IEEE Press,2007:527-531.
  • 7Dasgupta S,Biswas A,Das S,et al.Automatic circle detection on images with an adaptive bacterial foraging algorithmiC] //2008 Genetic and Evolutionary Computation Conference(GECCO 2008),2008:1695-1696.
  • 8Chen H,Zhu Y,Hu K.Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning[J].Applied Soft Computing,2010,10:539-547.
  • 9Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22:52-67.
  • 10Berg H.Motile behavior of bacteria[J].Phys Today,2000,53(1):24-29.

共引文献387

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部