期刊文献+

优化迭代步长的两种改进增量谐波平衡法 被引量:2

TWO GENERALIZED INCREMENTAL HARMONIC BALANCE METHODS WITH OPTIMIZATION FOR ITERATION STEP
下载PDF
导出
摘要 增量谐波平衡法(IHB法)是一个半解析半数值的方法,其最大优点是适合于强非线性系统振动的高精度求解.然而,IHB法与其他数值方法一样,也存在如何选择初值的问题,如初值选择不当,会存在不收敛的情况.针对这一问题,本文提出了两种基于优化算法的IHB法:一是结合回溯线搜索优化算法(BLS)的改进IHB法(GIHB1),用来调节IHB法的迭代步长,使得步长逐渐减小满足收敛条件;二是引入狗腿算法的思想并结合BLS算法的改进IHB法(GIHB2),在牛顿-拉弗森(Newton-Raphson)迭代中引入负梯度方向,并在狗腿算法中引入2个参数来调节BSL搜索方式用于调节迭代的方式,使迭代方向沿着较快的下降方向,从而减少迭代的步数,提升收敛的速度.最后,给出的两个算例表明两种改进IHB法在解决初值问题上的有效性. As a semi-analytial and semi-numerical method,the incremental harmonic balance(IHB)method is capable of dealing with strongly nonlinear systems to any desired accuracy.However,as it is often in case numerical method,there exists initial value problem that can cause divergence with using the IHB method.To solve the initial value problem,two generalized IHB method are presented in this work.The first one(GIHB1)is combined with backtracking line search(BLS)optimization algorithm,which adjust the iteration step to decrease for the convergence of the solutions.The second one(GIHB2)is combined with BLS optimization algorithm and the dogleg method,which is an iterative optimization algorithm for the solution of non-linear least squares problems.The GIHB2 method is adopted for the Newton-Raphson iteration with gradient descent such that the convergence of the solutions increases monotonically along the path with gradient descent way with two parameters.At the end,two examples are presented to show the efficiency and the advantages of the two GIHB methods for initial value problem.
作者 黄建亮 张兵许 陈树辉 Huang Jianliang;Zhang Bingxu;Chen Shuhui(Department of Applied Mechanics and Engineering,Sun Yat-sen University,Guangzhou 510275,China)
出处 《力学学报》 EI CAS CSCD 北大核心 2022年第5期1353-1363,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11972381) 广东省基础与应用基础研究基金资助项目(2022A1515011809)。
关键词 非线性振动 增量谐波平衡法 初值问题 回溯线搜索 狗腿法 nonlinear vibration incremental harmonic balance method initial value problem backtracking line search dogleg method
  • 相关文献

参考文献5

二级参考文献54

  • 1叶敏,陈予恕.非线性参数激励系统的动力分叉研究[J].力学学报,1993,25(2):169-175. 被引量:6
  • 2陈予恕,王德石.轴向激励作用下梁的混沌运动[J].非线性动力学学报,1993,1(1):124-135. 被引量:1
  • 3Ljung L. System Identification: Theory for the user. New Jersey: Prentice-Hall, 1987.
  • 4Billings SA. Identification of nonlinear systems-A survey. In: Proceedings of IEEE, Part D. 1980, 127(1): 272-285.
  • 5Haber R, Unbehauen H. Structure identification of non-linear dynamic systems - A survey in input/output approaches, Automatica, 1990, 26(4): 651-677.
  • 6Casas RA, Jacobson CA, Rey G J, et al. Harmonic balance methods for nonlinear feedback identification. In: Proceeding of the Allerton Conference on Communication, Control and Computing, Allerton IL, September 1997.
  • 7Yasuda K, Kawamura S, Watanabe K. Identification of nonlinear multi-degree-of-freedom systems. JSME International Journal, 1988, 31(1): 8-15.
  • 8Yuan CM, Feeny BF. Parametric identification of chaotic systems. Journal of Vibration and Control, 1998, 4(4): 405-426.
  • 9Thothadri M, Casas RA, Moon FC, et al. Nonlinear system identification of Multi-Degree-of-Freedom systems. Nonlinear Dynamics, 2003, 32(3): 307-322.
  • 10Thothadri M, Moon FC. Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dynamics, 2005, 39(1-2): 63-77.

共引文献15

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部