期刊文献+

广义Riesz基的双正交特征刻画

Biorthogonal Characterization of Generalized Riesz Bases
原文传递
导出
摘要 本文利用广义双正交序列研究广义Riesz基的等价刻画,得到了算子序列是广义Riesz基当且仅当该算子列是广义完备的广义Bessel序列,且它存在广义双正交序列及这个双正交序列也是广义完备的广义Bessel序列.进一步证明了等价刻画中两个广义Bessel序列的广义完备性条件可以去掉一个(或者任一个),并举例说明了广义双正交,广义完备与广义Bessel条件之间的关系. In this paper,we investigate the characterization of g-Riesz bases in term of g-biorthogonal sequences.We obtain that a sequence of operators is a g-Riesz basis if and only if it is a g-complete g-Bessel sequence with g-biorthogonal sequence which is also a g-complete g-Bessel sequence,and further prove that the condition for gcompleteness of one(any one) of two g-Bessel sequences can be removed from the characterization.Examples are given to illustrate the relations for g-biorthogonality,g-completeness and g-Bessel condition.
作者 张伟 李登峰 Wei ZHANG;Deng Feng LI(School of Mathematics and Information Sciences,He'nan University of Economics and Law,Zhengzhou 450046,P.R.China;School of Mathematical&Physical Sciences,Wuhan Textile University,Wuhan 430200,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2022年第4期599-606,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(61471410) 河南省高等学校重点科研项目(20A110013,21A110004)。
关键词 广义Bessel序列 广义Riesz基 广义双正交序列 广义完备 g-Bessel sequence g-Riesz basis g-biorthogonal sequence g-complete
  • 相关文献

参考文献8

二级参考文献90

  • 1XIAO XiangChun & ZENG XiaoMing Department of Mathematics,Xiamen University,Xiamen 361005,China.Some equalities and inequalities of g-continuous frames[J].Science China Mathematics,2010,53(10):2621-2632. 被引量:9
  • 2施咸亮,陈芳.Gabor框架的必要条件[J].中国科学(A辑),2006,36(12):1413-1421. 被引量:5
  • 3Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 4Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 5Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 6Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 7Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 8Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 9Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 10Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部