期刊文献+

随机变量的量子分解和增长图的渐近谱分布

Quantum decomposition of random variables and asymptotic spectral distribution of growing graphs
原文传递
导出
摘要 本文给出了一般Bernoulli随机变量X的量子分解,三点路图m步返回路线条数的积分表示以及两类增长图-圈与完全二分图的渐近谱分布.这使得在量子概率框架下研究经典随机变量或经典概率分布成为可能,也在一定程度上展示了图的谱分析中的量子概率技巧. We give the quantum decomposition of general Bernoulli random variable X,the integral representation of the number of return routes in m steps of a three point path graph,and the asymptotic spectral distribution of two kinds of growing graphs-cycle graph and complete bipartite graph.This makes it possible for us to study a classical variable or a probability distribution within the framework of quantum probability.To some extent,this also shows that the quantum probabilistic techniques in the spectral analysis of graphs.
作者 韩琦 寇亚欣 韩娅楠 陆自强 Qi HAN;Ya Xin KOU;Ya Nan HAN;Zi Qiang LU(School of Mat hematics and Statistics,Northwest Normal University,Lanzhou 730070,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2022年第4期657-664,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11861057) 甘肃省自然科学基金资助项目(20JR10RA085)
关键词 邻接矩阵 相互作用Fock空间 代数概率空间 量子分解 Adjacency matrix spectral interacting Fock Spaces algebraic probability space quantum decomposition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部