摘要
众所周知,复合算子问题是函数空间的一个基本问题.就一般情形而言,依赖导数刻画的全纯函数空间其复合算子问题要比单复变时复杂。本文讨论了高维单位球上边界一般函数空间F^(p,q,s)(B)到Bloch型空间B^(q+n/p)(B)复合算子有界或紧的充要条件问题,尤其给出了p≠q+n时紧性的简洁充要条件.
It is well known that the problem of composition operator is a basic problem in function spaces.In general,the problem of composition operator for holomorphic function spaces characterized by derivative is much more complicated than that of one complex variable case.In this paper,the authors give the necessary and sufficient condi-tions for the boundedness or compactness of composition opera tors from the boundary general function spaces F^(p,q,s)(B)to the Bloch type spaces B^(q+n/p)(B).In particular,the authors give the simple necessary and sufficient conditions for the compactness of the composition operator when p≠q+n.
作者
唐鹏程
张学军
Peng Cheng TANG;Xue Jun ZHANG(College of Mathematics and Statistics,Hunan Normal University,Changsha 410006,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2022年第4期679-690,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助的项目(11942109)。
关键词
边界一般函数空间
BLOCH型空间
有界性
紧性
高维
boundary general function space
Bloch type space
boundedness
compactness:high dimension