期刊文献+

面向防灾预案的两阶段应急血液供应链鲁棒优化 被引量:2

Robust Optimization for Two-Stage Emergency Blood Supply Chain Design Based on Disaster Preparedness Plan
原文传递
导出
摘要 为应对突发性灾害,管理者会提前准备预案以标准化防灾救灾管理,但常出现预先部署与实际灾害需求不匹配的难题。为此,基于应急血液供应链,对这一问题展开研究。对灾前血液储备与运输的防灾预案优化,灾后临时献血点选址、血液转运等在内的灾后救援进行两阶段统筹决策。构建了基于期望目标和最小最大后悔目标的场景鲁棒模型。并分别针对血浆和红细胞,将模型应用于我国龙门山地震带的灾害防治中。仿真结果表明,模型能够根据决策者经济性和鲁棒性的要求选择合适的预案,且在基于蒙特卡洛模拟生成的测试集下,选择的预案仍能够表现出符合预期的效果。 To mitigate unexpected disasters,the disaster preparedness plans should be prepared to unify disaster prevention and relief management.However,the disaster scenario considered in the preparedness plans usually are inconsistent with the real disasters which are unknown in advance.To address this issue,a scenario-based robust model combining the expect performance and the min-max regret was developed to study two-stage emergency blood supply chain.The optimization of the preparedness plan,including blood prepositioning and transportation of before disaster,and the post-disaster relief,including the location of temporary blood collection points as well as transshipment after disaster,were taken into account.A case study for plasma and red blood cells based on the Longmenshan Fault in China was implemented.The results show that the preparedness plan given by our proposed model can satisfy the economic and robust requirements in a flexible way.Moreover,the selected preparedness plan still can perform well in the outof-sample set generated from Monte Carlo simulation.
作者 钟莉梦桃 王长军 ZHONG Limengtao;WANG Changjun(Glorious Sun School of Business and Management,Donghua University,Shanghai 200051,China)
出处 《工业工程与管理》 北大核心 2022年第2期95-103,共9页 Industrial Engineering and Management
基金 上海市自然科学基金资助项目(20ZR1401900) 上海市哲学社会科学规划基金资助项目(2019BGL036) 国家自然科学基金重点项目(71832001) 中央高校基本科研业务费专项资金服务管理与创新基地项目(2232018H-07)。
关键词 血液供应链网络 突发性灾害 防灾预案 场景鲁棒 最小最大后悔 blood supply chain network sudden disaster preparedness plan scenario-based robust min-max regret
  • 相关文献

参考文献5

二级参考文献49

共引文献57

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部