摘要
针对遥感图像标签样本数据不足的问题,本文通过改进生成对抗网络分类方法,以更好地利用标签信息增强目标域类间的区分度,并利用AID、NWPU-RESISC45、UCMerced_LandUse和WHU-RS19数据集构建源域数据集和目标域数据集,并在构建的数据集上进行了实验。结果表明本文方法对目标域有较好的分类效果。
Aiming to insufficient labeled images in remote sensing,a new method was proposed to make better use of label information and enhance the differentiation between target domain classes by improving classification methods based on generative adversarial networks.Then,the method was experimented on the source domain dataset and target domain dataset which were built by selecting some categories from AID,NWPU-RESISC45,UCMerced LandUse and WHU-RS19 datasets,and results show that it has performance better for the target domain dataset.
作者
陈红顺
陈文杰
CHEN Hongshun;CHEN Wenjie(School of Information Technology, Beijing Normal University, Zhuhai, Zhuhai 519087, China)
出处
《微型电脑应用》
2022年第6期20-23,共4页
Microcomputer Applications
基金
广东省普通高校特色创新项目(2020KTSCX175)。
关键词
生成对抗网络
迁移学习
场景分类
遥感影像
generative adversarial networks(GAN)
transfer learning
scene classification
remote sensing images