期刊文献+

离港航班延误时间预测方法 被引量:4

Forecasting Method of Departure Flight Delay Time
下载PDF
导出
摘要 在如今的民航运行体系里,航班延误已经成了机场和航空公司为了提高效率与控制成本的主要研究目标。为了构建更准确的离港航班延误时间预测模型,首先分析了导致离港航班延误发生的主要因素,并利用皮尔逊相关度系数对各因素进行相关性分析。其次基于基本BP(back propagation)神经网络算法,构建离港航班延误时间预测模型,并进行优化;然后采用自动编码器(AutoEncoder)对BP算法进行改进;接着构建了基于支持向量机(support vector machine,SVM)的预测模型并与优化后的BP模型进行对比;最后基于上海浦东机场实际历史航班数据进行仿真检验,验证了本文优化模型的准确性和高效性。 In today's civil aviation operation system,flight delays have become the main research goal of airports and airlines in order to improve efficiency and control costs.In order to build a more accurate prediction model for the delay of departure flights,the main factors leading to the occurrence of departure flight delays were firstly analysed and correlation analysis of each factor was carried out using Pearson's correlation coefficient.Secondly,the back propagation(BP)neural network algorithm was used to build a delay prediction model and optimise it,support vector machine(SVM)-based prediction model was then constructed and compared with the optimised BP model.Finally,the accuracy and efficiency of the optimised model are verified through simulation tests based on actual historical flight data from Shanghai Pudong Airport.
作者 陈昱君 孙樊荣 沐瑶 许学吉 胡炽 CHEN Yu-jun;SUN Fan-rong;MU Yao;XU Xue-ji;HU Chi(Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China)
出处 《科学技术与工程》 北大核心 2022年第15期6354-6361,共8页 Science Technology and Engineering
基金 国家自然科学基金(71874081)。
关键词 BP神经网络 航班延误预测 机器学习 自动编码器 BP neural network flight delay estimation machine learning autoencoder
  • 相关文献

参考文献9

二级参考文献58

  • 1曹卫东,贺国光.连续航班延误与波及的贝叶斯网络分析[J].计算机应用,2009,29(2):606-610. 被引量:25
  • 2熊亚军,廖晓农,李梓铭,张小玲,孙兆彬,赵秀娟,赵普生,马小会,蒲维维.KNN数据挖掘算法在北京地区霾等级预报中的应用[J].气象,2015,41(1):98-104. 被引量:53
  • 3王世杰.影响飞行安全正点的航空气象要素[J].青海科技,2005,12(4):56-57. 被引量:16
  • 4陈瑞,肖湘宁,陶顺,张少军,陈安源.某配电网电压凹陷域分析[J].电工电能新技术,2007,26(3):73-76. 被引量:5
  • 5Pyrgiotis N, Malone K M, Odoni A. Modelling delay propaga- tion within an airport network[J].Transportation Research Part C: Emerging Technologies, 201:3, 27:60- 75.
  • 6Barnhart C, Fearing D, Vaze V. Modeling passenger travel and delays in the national air transportation system[J]. Ope- rations Research, 2014, 62 (3): 580-601.
  • 7Hao L, Hansen M, Zhang Y, et al. New York, New York: Two ways of estimating the delay impact of New York airports [J]. Transportation Research Part E: Logistics and Transpor- tation Review, 2014, 70:245- 260.
  • 8AhmadBeygi S, Cohn A, Guan Y, et al. Analysis of the po- tential for delay propagation in passenger airline networks[J]. Journal of Air Transport Management, 2008, 14 (5): 221-236.
  • 9Ahmadbeygi S, Cohn A, Lapp M. Decreasing airline delay propagation by re-allocating scheduled slack [J]. IIE Transac- tions, 2010, 42 (7): 478-489.
  • 10Lixia S, Craig W, Daniel G, et al. Methodologies for estima ring the impact of severe weather on airspace capacity [C] // The 26th Congress of International Council of the Aeronautical Sciences, 2008:1- 8.

共引文献65

同被引文献25

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部