期刊文献+

基于Hamel形式的柔性集群编队围捕

TARGET-CAPTURING OF SWARM USING FLEXIBLE FORMATION BASED ON HAMEL'S FORMALISM
下载PDF
导出
摘要 利用弹性体作为虚拟结构建立的集群控制可以实现编队的大规模形变,同时自然满足避碰避撞需求.通过将集群编队嵌入到几何精确梁中,利用在李代数中对流应变的插值及对编队的虚拟弹性势能的塑形来快速实现编队变换.在场论Hamel形式框架下,建立了集群柔性编队围捕的算法.其能精确反映集群中个体的位姿以利于工程实现,同时具有坐标选取无关性适于刻画集群大范围运动.所得算法具有分布式特征,可并行实现从而满足实时控制的需要.通过模拟仿真验证了所得算法在实际场景中的适用性和有效性. The swarm control choosing an elastic body as a virtual structure can realize large-scale deformation of formation,and meet the requirements of collision avoidance naturally.Firstly,the swarm is embedded in a geometrically exact beam.By using interpolation of convective strain in Lie algebra,the virtual elastic potential energy of formation is shaped to realize the formation transformation quickly.Secondly,an algorithm of swarm flexible formation for target-capturing is established.It can accurately characterize both positions and attitudes of individuals in the swarm for engineering implementation.Meanwhile,it is independent of coordinate choice and suitable for describing large overall motion of the swarm.The distributed algorithm can be implemented in parallel with a high computational efficiency.Finally,the simulation results demonstrate that the algorithm is applicable and effective in the actual scene.
作者 张祺 黄彬 史东华 Zhang Qi;Huang Bin;Shi Donghua(School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China)
出处 《动力学与控制学报》 2022年第3期89-98,共10页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11872107)。
关键词 集群控制 柔性编队 Hamel形式 集群围捕 swarm control flexible formation Hamel's formalism target-capturing
  • 相关文献

参考文献5

二级参考文献33

  • 1蔡志勤,周红,李学府.旋转三角形绳系卫星编队系统动态稳定性分析[J].计算力学学报,2013,30(S1):62-67. 被引量:1
  • 2朱振才,杨根庆,余金培,张锐.微小卫星组网与编队技术的发展[J].上海航天,2004,21(6):46-49. 被引量:16
  • 3Deepak T, Amir L, Christopher D R. Geometrically exact models for soft robotic manipulators. IEEE Transactions on Robotics, 2008, 24(4): 773-780.
  • 4Bishop T C, Cortez R, Zhmudsky O O. Investigation of bend and shear waves in a geometrically exact elastic rod model. Journal of Computational Physics, 2004, 193(2): 642-665.
  • 5Reissner E. On one-dimension, large-displacement, finite-strain beam theory. Stud Appl Math, 1973, 52: 87-95.
  • 6Antman S S. Kirchhoff problem for non-linearly elastic rods. Quart J Appl Math, 1974, 32(3): 221-240.
  • 7Antman S S, Jordan K B. Qualitative aspects of the spatial deformation of nonlinearly elastic rods. Proc Roy Soc Edinburgh Sect A, 1975, 73(5): 85-105.
  • 8Simo J C, Ju J W. Strain- and stress-based conti-nuum damage models -- I. Formulation. International Journal of Solids and Structures, 1987, 23(7): 821- 840.
  • 9Marsden J E, West M. Discrete mechanics and var- iational integrators. Acta Numerica, 2001, 10: 357- 514.
  • 10Lew A, Marsden J E, Ortiz M, et al. An overview of variational integrators // Franca L P, Tezduyar T E, Masud A. Finite element methods: 1970s and beyond.Barcelona: CIMNE, 2004:98-115.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部