期刊文献+

基于小波包融合微分熵的运动想象脑电信号处理 被引量:5

EEG signal processing of motor imagination based on wavelet packet fusion and differential entropy
下载PDF
导出
摘要 针对脑电信号特征提取导致有效信息丢失的问题,提出了一种基于小波包融合微分熵提取脑电信号特征的方法,可以充分提取脑电信号的有效信息。首先对脑电信号进行小波包分解,选取与运动想象相关的频率进行重构,得到脑电信号的时频信息;考虑到脑电信号的非线性特征,提取脑电信号微分熵特征。实验在脑电大赛数据集上进行验证,在不同分类器上分类准确率分别达到了88%和91%,结果表明小波包融合微分熵的脑电信号处理方法准确率明显提高。 Aiming at the problem of effective information loss caused by EEG feature extraction, a method of EEG feature extraction based on wavelet packet fusion differential entropy is proposed, which can fully extract the effective information of EEG signal. Firstly, the EEG signal is decomposed by wavelet packet, and the frequency related to motor imagination is selected for reconstruction to obtain the time-frequency information of EEG signal;Considering the nonlinear characteristics of EEG signals, the differential entropy characteristics of EEG signals are extracted. The experiment is verified on the EEG competition data set, and the classification accuracy of different classifiers reaches 88% and 91% respectively. The results show that the accuracy of EEG signal processing method based on wavelet packet fusion differential entropy is significantly improved.
作者 谷学静 宋杨 李峰 李林 GU Xuejing;SONG Yang;LI Feng;LI Lin(School of Electrical Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China;Tangshan Digital Media Engineering Technology Research Center,Tangshan Hebei 063000,China)
出处 《激光杂志》 CAS 北大核心 2022年第6期126-130,共5页 Laser Journal
基金 河北省自然科学基金联合研究基金专项项目(No.F2017209120) 唐山市沉浸式虚拟环境三维仿真基础创新团队(No.18130221A)。
关键词 脑电信号 运动想象 小波包 微分熵 特征提取 EEG signal motor imagination wavelet packet differential entropy feature extraction
  • 相关文献

参考文献4

二级参考文献81

  • 1何群,邵丹丹,王煜文,张园园,谢平.基于多特征卷积神经网路的运动想象脑电信号分析及意图识别[J].仪器仪表学报,2020,41(1):138-146. 被引量:15
  • 2谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 3E Curran, P Sykacck, S J Roberts. Cognitive tasks for driving a braincomputer interface system: a pilot study[J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,12(1) :48 - 54.
  • 4陈卓.脑部表层扫描技术-帮助大脑控制外部环境[DB/OL].http://www. cctv. com/news/world/20040929/102184. shtml,2004-09-29.
  • 5J R Wolpaw, N Birbaumer, W J McFarland. Brain-Computer Interface Technology: A review of the first international meeting[J] .IEEE Transaction on Rehabilitation Engineering,2000,8(2): 164- 173.
  • 6EEG-based communication [ DB/OL ]. http://www. ee. ic. ac. Uk/esearch/eural/bci/review. html, 2004-05-02.
  • 7Vaughan T M.EEG-based communication:prospects and problems[J].IEEE Trans Rehabil Eng, 1996,4(4) :425 - 430.
  • 8B Graimann, J E Huggins, S P Levine. Detection of ERP and ERD/ERS patterns in single ECG channels[A] .Proc of the 1st international IEEE EMBS Conference on Neural Engineering [C]. Capri island:IEEE,2003,614 - 616.
  • 9Vaughan T M. Guest editorial brain-computer interface technology: A review of the second international meeting [J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,11 (2) :94 - 109.
  • 10F Cincotti, D Mattia, C Babiloni. The use of EEG modifications due to motor imagery for brain-computer interfaces[J] .IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2003, 11 (2): 131 -133.

共引文献99

同被引文献43

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部