摘要
针对脑电信号特征提取导致有效信息丢失的问题,提出了一种基于小波包融合微分熵提取脑电信号特征的方法,可以充分提取脑电信号的有效信息。首先对脑电信号进行小波包分解,选取与运动想象相关的频率进行重构,得到脑电信号的时频信息;考虑到脑电信号的非线性特征,提取脑电信号微分熵特征。实验在脑电大赛数据集上进行验证,在不同分类器上分类准确率分别达到了88%和91%,结果表明小波包融合微分熵的脑电信号处理方法准确率明显提高。
Aiming at the problem of effective information loss caused by EEG feature extraction, a method of EEG feature extraction based on wavelet packet fusion differential entropy is proposed, which can fully extract the effective information of EEG signal. Firstly, the EEG signal is decomposed by wavelet packet, and the frequency related to motor imagination is selected for reconstruction to obtain the time-frequency information of EEG signal;Considering the nonlinear characteristics of EEG signals, the differential entropy characteristics of EEG signals are extracted. The experiment is verified on the EEG competition data set, and the classification accuracy of different classifiers reaches 88% and 91% respectively. The results show that the accuracy of EEG signal processing method based on wavelet packet fusion differential entropy is significantly improved.
作者
谷学静
宋杨
李峰
李林
GU Xuejing;SONG Yang;LI Feng;LI Lin(School of Electrical Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China;Tangshan Digital Media Engineering Technology Research Center,Tangshan Hebei 063000,China)
出处
《激光杂志》
CAS
北大核心
2022年第6期126-130,共5页
Laser Journal
基金
河北省自然科学基金联合研究基金专项项目(No.F2017209120)
唐山市沉浸式虚拟环境三维仿真基础创新团队(No.18130221A)。
关键词
脑电信号
运动想象
小波包
微分熵
特征提取
EEG signal
motor imagination
wavelet packet
differential entropy
feature extraction