期刊文献+

大风机叶片材料轻量化的探索 被引量:7

Exploration on Material Lightweighting for large Wind Turbine Blades
下载PDF
导出
摘要 分析了梁帽的轻量化发展方向,研究了梁帽的不同材料、不同工艺的性能,通过实验及数据统计的分析,对比结果表明:同为玻纤或碳纤维,采用拉挤成型工艺的拉挤板性能要优于灌注工艺成型的织物灌注玻璃钢性能。碳纤维拉挤板性能最优,是轻量化的首选。 The developing direction of lightweight spar caps was analyzed,and the performances resulting from different materials and different processes of spar caps were studied.The analysis and comparison of experiments and data statistics have showed that the performance of glass or carbon fiber pultruded panels is better than that of GRP products molded by resin infusion process with fabrics as reinforcement.Carbon fiber pultruded panels have the best performance so that they can be the priority for lightweighting.
作者 孙二平 苏宝定 江海涛 Sun Erping;Su Baoding;Jiang Haitao(China General Nuclear New Energy Holding Co.,Ltd.,Beijing 100071;China General Nuclear Rudong Offshore Wind Power Co.,Ltd.,Nantong 226400)
出处 《玻璃纤维》 CAS 2022年第2期37-42,共6页 Fiber Glass
关键词 大风机叶片 轻量化 性能 拉挤板 large wind turbine blades lightweighting performance pultruded panel
  • 相关文献

参考文献8

二级参考文献53

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2刘永前,韩爽,杨勇平,高辉.提前三小时风电机组出力组合预报研究[J].太阳能学报,2007,28(8):839-843. 被引量:21
  • 3Garrad Hassan&Partners Ltd. Forecasting Short- Term Wind Farm Production. http: //www. garradhassan.com.
  • 4Peter Coppin, Jack Katzfey. The Feasibility of Wind Power Production Forecasting in the Australian Con text [R]. CSIRO Atmospheric Research. Report to: National Electricity Market Management Company Limited, 2003, 12.
  • 5The ANEMOS Project: next generation forecasting of wind power, http: //anemos. cma. fr.
  • 6Thanasis G Barbounis, John B Theochairs, Minas C. Alexiadis, et al. Long-term Wind Speed and Power Forecasting Using Local Recurrent Neural Network Models [J]. IEEE Transactions on Energy Conversion, 21 (1), 2006, 3.
  • 7Landberg L. Short-term Prediction of Local Wind Conditions [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89: 235-245.
  • 8Landberg L. Short-term Prediction of the power produc tion from wind farms [J]. Journal of Wind Engineering and Industrial Aerodynamics. 1999; 80: 207 - 220.
  • 9Pinson P, Siebert N, Kariniotakis G. Forecasting of Regional Wind Generation by a Dynamic Fuzzy-Neural Networks Based Upscaling Approach[C].European Wind Energy Conference&Exhibition EWEC 2003, Madrid.
  • 10George Kariniotakis. Next Generation Short-term Forecasting of Wind Power-Overview of the Anemos Project[C].European Wind Energy Conference, Athens, 27 Feb. -2 Mar. 2006.

共引文献142

同被引文献27

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部