期刊文献+

基于复合陷波器的磁悬浮飞轮微振动力抑制

Micro-Vibration Suppression of Magnetic Levitation Flywheel Based on Compound Notch Filter
下载PDF
导出
摘要 为控制磁悬浮飞轮的微振动,以振动力为抑制目标,提出了一种基于陷波器的复合控制方法。通过对磁悬浮飞轮干扰系统的建模,分析了振动力产生的机理,将传感器同频干扰和质量不平衡产生的同频振动力与传感器倍频干扰产生的倍频振动力分别进行抑制,提出抑制同频振动力与倍频振动力的全频复合陷波器控制方法,并通过MATLAB/Simulink仿真进行振动控制效果的验证,转速为209rad/s和628rad/s时分别在0.3s和0.65s后振动力趋近于0N;仿真结果表明,复合陷波器控制方法可以在全频范围内快速抑制同频及倍频振动力。 In order to control the micro-vibration of maglev flywheel,by taking the vibration force as the suppression target,a compound control method based on notch filter is proposed.Through the modelling of magnetic levitation flywheel interference system,the mechanism of vibration force is analyzed,and the synchronous vibration force caused by sensor runout,unbalanced vibration force and the frequency-doubling vibration force caused by sensor runout are suppressed respectively.A full-frequency compound notch filter control method for suppressing synchronous vibration force and frequency doubling vibration force is proposed,and the vibration control effect is verified by MATLAB/Simulink simulation.When the rotational speed is 209rad/s and 628rad/s,the vibration force approaches to 0N after 0.3s and 0.65s,respectively.The simulation results show that the synchronous and frequency-doubling vibration force in the full frequency range can be quickly suppressed by using the compound notch filter control method.
作者 曾塬 刘昆 魏静波 Zeng Yuan;Liu Kun;Wei Jingbo(School of Aeronautics and Astronautics,Sun Yat-sen University,Guangzhou 510275,China)
出处 《航天控制》 CSCD 北大核心 2022年第3期62-67,共6页 Aerospace Control
基金 深圳市基础研究重点项目(基2020N015)。
关键词 磁悬浮转子 不平衡振动 传感器干扰 复合陷波器 Magnetic levitation rotor Unbalanced vibration Sensor runout Compound notch filter
  • 相关文献

参考文献8

二级参考文献86

  • 1龙亚文,谢振宇,徐欣.磁悬浮轴承H_∞鲁棒控制策略研究[J].振动与冲击,2013,32(23):115-120. 被引量:11
  • 2吴刚,刘昆,张育林.磁悬浮飞轮技术及其应用研究[J].宇航学报,2005,26(3):385-390. 被引量:19
  • 3彭晓军,高钟毓,王永樑.磁电轴承中抑制不平衡振动的陷波滤波器设计方法[J].机械工程学报,2006,42(6):120-123. 被引量:15
  • 4魏彤,房建成.磁悬浮控制力矩陀螺磁轴承的变工作点线性化自适应控制方法[J].机械工程学报,2007,43(6):110-115. 被引量:21
  • 5XIE Y C,SAWADA H,HASHIMOTO T,et al.Adaptive model following control method for actively controlled magnetic bearing momentum wheel[C] //Proceedings of the 5th International Symposium on Magnetic Suspension Technology,December,1999,Santa Barbara,America,1999:547-561.
  • 6BICHLER U J.A low noise magnetic bearing wheel for space application[C] //Proccedings of the 2nd International Symposium on Magnetic Bearing,July,1990,Tokyo,Japan,1990:1-8.
  • 7SETIAWAN D,MUKHERJEE&MASLEN H.Synchronous disturbance compensation in active magnetic bearings using bias current excitation[C] //Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mecbatronics,July,2001,Como,Italy,2001:707-712.
  • 8NEZAMABADI R,POSHTAN J,JAILED MOTLAGH M R.Robust control design to imbalance compensation and automatic balancing of magnetic bearings[C] //Proceedings of the IEEE International Conference on Industrial Technology,December,2006,Mumbai,India,2006:1 093-1 098.
  • 9HUSAIN A R,AHMAD MN,MOHD YATIM A H.Sliding mode control with linear quadratic hyperplane design:An application to an active magnetic bearing system[C] //Proceedings of the 5th Smdent Conference on Research and Development,December,2007,Selangor,Malaysia,2007:ll-12.
  • 10BI C,WU D Z,BANG Q,et al.Automatic learning control for unbalance compensation in active magnetic bearings[J].IEEE Transactions on Magnetics,2005,4l(7):2 270-2 280.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部