期刊文献+

Application of metaheuristic algorithms in interval type-2 fractional order fuzzy TID controller for nonlinear level control process under actuator and system component faults 被引量:2

原文传递
导出
摘要 Purpose–The two-tank level control system is one of the real-world’s second-order system(SOS)widely used as the process control in industries.It is normally operated under the Proportional integral and derivative(PID)feedback control loop.The conventional PID controller performance degrades significantly in the existence of modeling uncertainty,faults and process disturbances.To overcome these limitations,the paper suggests an interval type-2 fuzzy logic based Tilt-Integral-Derivative Controller(IT2TID)which is modified structure of PID controller.Design/methodology/approach–In this paper,an optimization IT2TID controller design for the conical,noninteracting level control system is presented.Regarding to modern optimization context,the flower pollination algorithm(FPA),among the most coherent population-based metaheuristic optimization techniques is applied to search for the appropriate IT2FTID’s and IT2FPID’s parameters.The proposed FPA-based IT2FTID/IT2FPID design framework is considered as the constrained optimization problem.System responses obtained by the IT2FTID controller designed by the FPA will be differentiated with those acquired by the IT2FPID controller also designed by the FPA.Findings–As the results,it was found that the IT2FTID can provide the very satisfactory tracking and regulating responses of the conical two-tank noninteracting level control system superior as compared to IT2FPID significantly under the actuator and system component faults.Additionally,statistical Z-test carried out for both the controllers and an effectiveness of the proposed IT2FTID controller is proven as compared to IT2FPID and existing passive fault tolerant controller in recent literature.Originality/value–Application of new metaheuristic algorithm to optimize interval type-2 fractional order TID controller for nonlinear level control system with two type of faults.Also,proposed method will compare with other method and statistical analysis will be presented.
出处 《International Journal of Intelligent Computing and Cybernetics》 EI 2021年第1期33-53,共21页 智能计算与控制论国际期刊(英文)
  • 相关文献

参考文献1

共引文献1

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部