摘要
随着智能移动设备的普及,新一代移动应用如人脸识别、虚拟现实等逐渐兴起,但移动设备因计算能力和电池容量有限,无法支持这类计算需求高且延迟敏感的应用。因此,移动边缘计算被提出以解决该问题。然而,在MEC环境中,边缘服务器可靠性较低,若发生设备故障会导致已有的卸载决策失效,使得应用程序响应时间增加,用户体验感降低。针对边缘服务器可能发生故障的问题,同时考虑到深度确定性策略梯度算法通过网络拟合策略函数,可以较好地应对高维动作空间的问题,提出了基于深度确定性策略梯度的服务器可靠性任务卸载策略。首先,通过复制子任务进行二次卸载的方式来降低应用执行的失败率;其次,将服务器可靠性约束下最小化应用时延的任务卸载和资源分配问题建模为马尔可夫决策过程;最后,利用基于深度确定性策略梯度的算法来求解任务卸载策略。仿真结果表明,SRTO-DDPG策略能有效地与环境交互并获得最优卸载决策,其性能优于本地执行策略,且相比基于DDPG的单卸载地点任务卸载策略,所提策略在可靠性约束下能实现低约26.16%的总延迟,能够更好地适应多服务器场景中边缘服务器的可靠性问题。
With the popularization of smart mobile devices,a new generation of mobile applications such as face recognition and virtual reality have gradually emerged.The limited computing power and battery capacity of mobile devices cannot support applications with high computing requirements and latency-sensitive applications.Therefore,mobile edge computing(MEC)is proposed to solve this problem.However,in the MEC environment,the reliability of the edge server is low,and the possible equipment failure will lead to the existing offloading decision failure,which increases the application response time and reduces the user experience.In view of the possible failure of edge servers,and considering that the deep deterministic policy gradient(DDPG)algorithm can better deal with the problem of high-dimensional action space through the network fitting strategy function,this paper proposes a server-reliability task offloading based on deep deterministic policy gradient(SRTO-DDPG).The main work is as follows.Firstly,the failure rate of application execution is reduced by duplicating subtasks for secondary offload.Secondly,the task offloading and resource allocation problems with server reliability constraints to minimize application delay are modeled as Markov decision process(MDP).Finally,an algorithm based on DDPG is used to solve the problem.Simulation results show that the SRTO-DDPG strategy can effectively interact with the environment to obtain the optimal offloading decision,and its perfor-mance is better than the local execution strategy(LE).Compared with the single location task offloading based on deep determi-nistic policy gradient(SLTO-DDPG),this strategy can achieve a low total delay of about 26.16%under reliability constraints,and can better adapt to the reliability problems of edge servers in multi-server scenarios.
作者
李梦菲
毛莺池
屠子健
王瑄
徐淑芳
LI Meng-fei;MAO Ying-chi;TU Zi-jian;WANG Xuan;XU Shu-fang(College of Computer and Information,Hohai University,Nanjing 210098,China;Key Laboratory of Water Big Data Technology of Ministry of Water Resources,Nanjing 210098,China)
出处
《计算机科学》
CSCD
北大核心
2022年第7期271-279,共9页
Computer Science
基金
江苏省重点研发项目(BE2020729)
姑苏创新领军人才专项(ZXL2020210)
2020年昆山祖冲之攻关计划项目
中国华能集团关键技术项目(HNKJ19-H12,HNKJ20-H64)。
关键词
移动边缘计算
任务卸载
资源分配
深度强化学习
依赖性任务
Mobile edge computing
Task offloading
Resource allocation
Deep reinforcement learning
Dependent tasks