摘要
部分基于深度学习的图像超分辨率重建算法通过扩展网络层的深度来提高网络模型的整体特征表达能力。然而,一味过度地扩展网络的深度会造成网络模型过参数化和复杂化,并且冗余的网络参数会增加特征表达的不稳定性。在LTH剪枝算法基础上改变权重参数并使用均衡学习策略,提出一种适用于图像超分辨率重建任务的神经网络非结构化剪枝算法RLTH。在不改变网络结构和不增加计算复杂度的前提下,通过搜索原始网络模型的最优稀疏子网络排除冗余参数带来的影响,在有限的参数资源中捕获更细粒度和丰富的图像特征,进而提高网络模型的整体特征表达能力。基于Set5、Set14和BSD100测试集的实验结果表明,与原始网络模型和应用LTH剪枝算法相比,应用RLTH算法获得的重建图像PSNR和SSIM均得到提升,且具有更丰富的细节特征,整体和局部轮廓更清晰。
Many deep learning-based image super-resolution reconstruction algorithms improve the overall feature expression ability of a network by extending the depth of the network.However,excessively extending the depth of the network causes the model to be over-parameterized and complicated. Furthermore,redundant parameters increase the instability of feature expression. To address this issue,based on the LTH pruning algorithm,the weight parameters are changed and the balanced learning strategy is used,this paper proposes a neural network unstructured pruning algorithm which is suitable for image super-resolution reconstruction tasks,called the RLTH pruning algorithm.Without changing the network structure and increasing the computational complexity,the overall feature expression ability of the network is improved by searching for an optimal yet sparse sub-network of the original network,which excludes the influence of redundant parameters and maximizes the ability of capturing fine-grained and richer features with limited parameters.The experimental results based on Set5,Set14 and BSD100 test sets show that,compared with the original network model and LTH pruning algorithm,the PSNR and SSIM of the reconstructed images obtained by RLTH algorithm are improved,and they have richer detail features and clearer overall and local contours.
作者
黎浩民
李光平
LI Haomin;LI Guangping(School of Information Engineering,Guangdong University of Technology,Guangzhou 510000,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2022年第7期247-253,共7页
Computer Engineering
基金
国家自然科学基金(61601130)
大亚湾科技计划项目(2020010203)。
关键词
单帧图像超分辨率重建
神经网络
非结构化剪枝
深度学习
稀疏网络
Single Image Super-Resolution(SISR)reconstruction
neural network
unstructured pruning
deep learning
sparse network