摘要
针对在小场景中灵活布设目标检测系统的需求,提出基于边缘计算的实时目标检测系统,采用边缘计算平台和目标检测算法相结合的方式对视频进行智能分析。选择低功耗嵌入式图像处理系统Jetson Nano搭建边缘计算平台,实现视频数据的边缘侧智能分析。利用优化后的MobileNet-SSD模型及特征融合模块在MobileNet-SSD网络上添加上下文信息,提高了目标检测的精度。在Jetson Nano嵌入式板上测试,该模型的平均精度达到80.4%,检测速度32帧/s,快于标准视频速度(30帧/s)。实验结果表明,该网络在检测小尺度和密度较大的目标时具有较好的检测效果。
Aiming at the requirement of flexible object detection system in small scene,a real-time target detection system based on edge computing is proposed.The edge computing platform and object detection algorithm are used to analyze the video intelligently.In this paper,Jetson Nano,a low-power embedded image processing system,was selected to build an edge computing platform to realize edge side intelligent analysis of video data.The MobileNet-SSD model is optimized,and the feature fusion module is used to add context information to MobileNet-SSD network,which improves the accuracy of object detection.Tested on Jetson Nano embedded boards,the model achieved an average accuracy of 80.4%and detected at 32 frames per second,faster than the standard video speed of 30 frames per second.Experimental results show that the proposed network has a good detection effect on small scale and large density targets.
作者
朱亚东洋
李心超
魏文豪
李婧莹
高梦楠
于沛
ZHU Yadongyang;LI Xinchao;WEI Wenhao;LI Jingying;GAO Mengnan;YU Pei(School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China;North Automatic Control Technique Research Institute, Taiyuan 030006, China;China Fire and Rescue Institute, Beijing 102202, China)
出处
《北京石油化工学院学报》
2022年第2期40-45,共6页
Journal of Beijing Institute of Petrochemical Technology
基金
北京石油化工学院交叉科研探索项目(BIPTCSF-009)
国家级大学生创新创业训练计划项目(2021J00208)。