期刊文献+

离散输入受限系统的增益调度事件触发和自触发控制 被引量:1

Gain scheduled event-triggered and self-triggered control of discrete-time input constrained systems
原文传递
导出
摘要 针对离散输入受限系统,分别设计静态和动态的增益调度事件触发和自触发控制算法.首先设计一种基于离散参量Lyapunov方程的静态增益调度事件触发控制算法,该算法通过事件触发机制更新控制增益,使得在增大闭环系统收敛速率的同时节约通讯资源.为了避免对采样状态和测量误差的连续监测,设计了相应的静态增益调度自触发控制算法;同时,为进一步增大触发间隔,分别设计相关的动态增益调度事件触发和自触发控制算法.不仅建立设计参数与最小触发间隔之间的关系,还给出可以避免triviality现象发生的条件;最后,将所提出算法应用于航天器交会系统控制器的设计,并直接在原始非线性模型上进行仿真,仿真结果验证了所设计算法的有效性. This article proposes static/dynamic gain scheduled event-triggered and self-triggered control algorithms for discrete-time input constrained systems. Firstly, a static event-triggered gain scheduled control(GSETC) algorithm based on the discrete-time parametric Lyapunov equation, where the parameter in the control gain is updated using a static event-triggered mechanism, is proposed such that the convergence rate of the closed-loop systems is increased and the communication resources are saved simultaneously. In order to avoid monitoring all sampling states and the measurement errors, the static self-triggered gain scheduled control(GSSTC) algorithm is also designed. Moreover, in order to further increase the inter-event times, the corresponding dynamic GSETC and GSSTC are designed. An explicit relationship between the design parameter and the minimal inter-event time and a condition for avoiding the triviality phenomenon are given. Finally, the designed algorithms are used to stabilize the spacecraft rendezvous system, and numerical simulations on the original nonlinear model show the effectiveness of the proposed algorithms.
作者 张凯 周彬 ZHANG Kai;ZHOU Bin(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第6期1489-1496,共8页 Control and Decision
基金 国家自然科学基金项目(61773140)。
关键词 离散输入受限系统 事件触发控制 自触发控制 增益调度控制 动态事件触发机制 离散参量Lyapunov方程 航天器交会 discrete-time input constrained systems event-triggered control self-triggered control gain scheduled control dynamic event-triggered mechanism discrete parametric Lyapunov equation spacecraft rendezvous
  • 相关文献

参考文献2

二级参考文献20

  • 1Meier L, Peschon J, Dressier R. Optimal control of measurement subsystems[J]. IEEE Trans on Automatic Control, 1967, 12(5): 528-536.
  • 2Gupta V, Chung T H, Hassibi B, et al. On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage[J]. Automatica, 2006, 42(2): 251-260.
  • 3Zhao E Shin J, Reich J. Information-driven dynamic sensor collaboration for tracking applications[J]. IEEE Signal Processing Magazine, 2002, 19(2): 61-72.
  • 4Hristu-Varsakelis D, Morgansen K. Limited communication control[J]. Systems and Control Letters, 1999, 37(4): 193-205.
  • 5Walsh G, Ye H. Scheduling of networked control systems[J]. IEEE Control Systems Magazine, 2001, 21(1): 57-65.
  • 6Ben Gaid M M, Cela A, Hamam Y. Optimal integrated control and scheduling of networked control systems with communication constraints: Application to a car suspension system[J]. IEEE Trans on Control Systems Technology, 2006, 14(4): 776-787.
  • 7Brockett R W. Stabilization of motor networks[C]. Proc of the 34th IEEE Conf on Decision and Control. New Orleans: IEEE, 1995: 1484-1488.
  • 8Rehbinder H, Sanfridson M. Scheduling of a limited communication channel for optimal control[J]. Automatica, 2004, 40(3): 491-500.
  • 9Lincoln B, Bernhardsson B. LQR optimization of linear system switching[J]. IEEE Trans on Automatic Control, 2002, 47(10): 1701-1705.
  • 10Zhang L, Hristu-Varsakelis D. Communication and control co-design for networked control systems[J]. Automatica, 2006, 42(6): 953-958.

共引文献36

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部