期刊文献+

基于深度在线迁移的变负载下滚动轴承故障诊断方法 被引量:14

Fault diagnosis method of rolling bearing under varying loads based on deep online transfer
原文传递
导出
摘要 针对变负载条件下滚动轴承源域与目标域中相同状态的数据特征分布差异性较大,目标域数据按照序列方式在线获取时,数据更新需重新训练模型的问题,提出一种深度在线迁移的CNN-ISVM (convolutional neural networks-incremental support vector machine)变负载下滚动轴承故障诊断方法.该方法运用短时傅里叶变换得到不同负载下滚动轴承振动信号的频谱图并构建数据集;使用源域数据建立CNN-ISVM预训练模型并保存模型参数;利用迁移学习将源域共享模型参数迁移至目标域CNN-ISVM模型训练过程中,快速建立分类模型;分类模型中的ISVM分类器在保留已学到知识的基础上,在线处理目标域新增数据,无需重新训练.经实验验证,所提出方法可实现数据按照序列方式采集的变负载下滚动轴承多状态在线分类,并具有较好的稳定性及较高的准确率. For the problem that the data feature distribution of the same state in the source domain and target domain of rolling bearing is quite different under varying loads, and the model needs to be retrained for data update when the target domian data is obtained online in a sequential manner, a fault diagnosis method of rolling bearing under varying loads with the deep online transfer CNN-ISVM(convolutional neural networks-incremental support vector machine) is proposed. Short time Fourier transform is used to obtain the time-frequency spectrum of rolling bearing vibration signals under different loads, and the data sets can be constructed;the source domain data is used to build the CNN-ISVM pre-training model, and the model parameters are saved;transfer learning is used to transfer the source domain shared parameters to the target domain CNN-ISVM model training process to quickly establish the classification model;the ISVM classifier in the classification model retains the learned knowledge and processes the new data in the target domain online without being retrained. The experimental results verify that the proposed method can realize multi-state online classification of rolling bearings under varying loads with data collected in a sequential manner, and has better stability and higher accuracy.
作者 康守强 刘旺辉 王玉静 王庆岩 Mikulovich V I KANG Shou-qiang;LIU Wang-hui;WANG Yu-jing;WANG Qing-yan;Mikulovich V I(School of Electrical and Electronic Engineering,Harbin University of Science and Technology,Harbin 150080,China;Belarusian State University,Minsk 220030,Belarus)
出处 《控制与决策》 EI CSCD 北大核心 2022年第6期1521-1530,共10页 Control and Decision
基金 国家自然科学基金项目(51805120) 黑龙江省自然科学基金项目(LH2019E058) 黑龙江省普通高校基本科研业务专项资金项目(LGYC2018JC022)。
关键词 滚动轴承 迁移学习 在线学习 增量支持向量机 卷积神经网络 故障诊断 rolling bearing transfer learning online learning incremental support vector machine convolutional neural network fault diagnosis
  • 相关文献

参考文献8

二级参考文献81

共引文献549

同被引文献108

引证文献14

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部