期刊文献+

两阶段混合优化算法求解模糊需求下多时间窗车辆路径问题 被引量:8

Two stage hybrid optimization algorithm for vehicle routing problem with multiple time windows under fuzzy demand
原文传递
导出
摘要 针对现实中广泛存在的一类模糊需求下多时间窗车辆路径问题(vehicle routing problem with multiple time windows under fuzzy demand, VRPMTW_FD),即车辆配送前客户需求模糊但车辆到达客户后其需求变为确定的多时间窗车辆路径问题(vehicle routing problem with multiple time windows, VRPMTW),以最小化总成本为优化目标,构建基于模糊可信性理论的模糊机会约束规划模型,并提出一种两阶段混合优化算法(two-stage hybrid optimization algorithm, TSHOA)进行求解.首先,在TSHOA的第1阶段设计改进灰狼优化算法(improved grey wolf optimizer, IGWO)求解车辆配送前客户需求模糊的VRPMTW,以获得VRPMTW_FD的预优化路径;然后,在TSHOA的第2阶段设计最优点重调度策略(optimal point rescheduling strategy, OPRS),对预优化路径进行动态调整,从而确定合适的返回点以降低因预优化路径故障产生的额外配送成本.通过不同规模问题上的仿真实验和算法比较,验证了TSHOA可有效求解VRPMTW_FD. Aiming at a type of vehicle routing problems with multiple time windows under fuzzy demand(VRPMTW_FD)that exists widely in reality, which is that the customer demand is fuzzy before the vehicle is delivered but the customer demand becomes definite after the vehicle reaches the customer, a fuzzy chance constrained programming model based on the fuzzy credibility theory is constructed to minimize the total cost, and a two-stage hybrid optimization algorithm(TSHOA) is proposed to solve it. Firstly, the first stage of the TSHOA designs an improved gray wolf optimizer(IGWO)to solve the VRPMTW with fuzzy customer demand before vehicle delivery, to obtain the pre-optimized path of the VRPMTW_FD. Then, in the second stage of the TSHOA, the optimal point rescheduling strategy(OPRS) is designed to dynamically adjust the pre-optimized path, so as to determine the appropriate return point to reduce the additional distribution cost due to the failure of the pre-optimized path. Through simulation experiments and algorithm comparisons on different scale problems, it is verified that the TSHOA can effectively solve the VRPMTW_FD.
作者 李楠 胡蓉 钱斌 金怀平 于乃康 LI Nan;HU Rong;QIAN Bin;JIN Huai-ping;YU Nai-kang(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;School of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第6期1573-1582,共10页 Control and Decision
基金 国家自然科学基金项目(61963022,62173169,51665025)。
关键词 车辆路径问题 模糊需求 多时间窗 灰狼优化算法 局部搜索 动态调整 vehicle routing problem fuzzy demand multi time windows gray wolf optimizer local search dynamic adjustment
  • 相关文献

参考文献5

二级参考文献37

  • 1曹二保,赖明勇,李董辉.基于混合差分进化算法的模糊需求车辆路径问题[J].系统工程理论与实践,2009,29(2):106-113. 被引量:21
  • 2张建勇,李军.模糊车辆路径问题的一种混合遗传算法[J].管理工程学报,2005,19(2):23-26. 被引量:22
  • 3张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 4TEODOROVIC D, PAVKOVIC G. The fuzzy set theory ap-proach to the vehicle routing problem when demand at nodes is uncertain[J]. Fuzzy Sets and Systems, 1996, 82(3):307-317.
  • 5CAO Erbao, LAI Mingyong. The open vehicle routing prob- lem with fuzzy demands [J]. Expert Systems with Applica- tions, 2010, 37(3): 2405 2411.
  • 6LI Jian, DA Qingli. Multiple vehicle routing problem integrat- ed reverse logistics with fuzzy reverse demands[J]. Journal of Southeast University, 2008, 24(2): 222-227.
  • 7LIU Baoding. Uncertain theory: an introduce to its axiomatic foundations[M]. Berlin, Germany: Springer-Verlag, 2004.
  • 8WANG Wanliang, WU Bin, ZHAO Yanwei, et al. Particle swarm optimization for open vehicle routing problem[J]. Lec- ture Notes in Artificial Intelligence, 2006, 4114 : 999-1007.
  • 9BERGH F V D. An analysis of particle swarm optimizers [D]. Pretoria, South Africa:University of Pretoria, 2002.
  • 10THOMPSON B B, MARKS R J, EL-SHARKAWI M A, et al. Inversion of neural network underwater acoustic model for estimation of bottom parameters using modified particle swarm optimizer[C]//Proceedings of the International Joint Conference on Neural Networks. Washington, D. C. , USA: IEEE, 2003 : 1306.

共引文献162

同被引文献48

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部