期刊文献+

基于伪谱法的水下航行体快速操舵变深图谱研究

Systematic diagram of depth changing for underwater vehicles under the control of diving planes based on pseudo-spectral method
下载PDF
导出
摘要 本文设计了hp自适应Radau伪谱算法(hp-RPM),基于水下航行体垂直面三自由度运动方程求解了操纵首尾升降舵控制方式下的上浮最优控制问题。根据不同航速、不同最大纵倾角限制、不同变深范围的仿真计算上浮总时间结果,绘制了最大纵倾角—航速图谱、最大纵倾角—变深范围图谱和航速—变深范围图谱,并根据最快变深操纵控制的特点,绘制了不同变深范围的回舵提前深度图谱和最大垂速图谱。最优控制结果符合操纵运动规律,可用于指导操舵人员变深机动操纵、制定变深机动训练标准和开展训练效果评估。 An hp-adaptive Radau pseudo-spectral algorithm(hp-RPM)is designed,with the 3 DOF equations of motion under the operation of bow plane and stern plane in the vertical plane,to investigate the optimal control of ascent problem for underwater vehicle.The total ascent time under the combination of different initial speed,restriction of maximum pitch angle and range of depth changing is summarized.Systematic diagram of maximum pitch angle-initial speed,maximum pitch angle-range of depth changing and initial speed-range of depth changing are drawn,the lead depth to implement the pull out maneuver and maximum vertical speed are draw as well.Results of the optimal control problems agree with the regulation of maneuvering motion,the systematic diagram can be used as guidelines for the helmsman to implement depth changing operation,it also can be used to enact corresponding training standards and evaluate the training effect.
作者 李继中 艾璇 林兆伟 宋江峰 LI Ji-zhong;AI Xuan;LIN Zhao-wei;SONG Jiang-feng(Wuhan Second Ship Design and Research Institute,Wuhan 430205,China)
出处 《舰船科学技术》 北大核心 2022年第11期48-53,共6页 Ship Science and Technology
关键词 hp自适应 Radau伪谱法 变深 最优控制 图谱 hp-adaptive Radau pseudo-spectral method depth changing optimal control systematic diagram
  • 相关文献

参考文献7

二级参考文献130

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2罗建军,王明光,袁建平.基于伪光谱方法的月球软着陆轨道快速优化[J].宇航学报,2007,28(5):1119-1122. 被引量:16
  • 3Betts J T. Survey of numerical methods for trajectory opti- mization [ J ]. Journal of Guidance, Control, and Danym- ics, 1998,21 (2) : 193-206.
  • 4Hull D G. Conversion of optimal control problems into pa- rameter optimization problems [ J ]. Journal of Guidance, Control,and Dynamics. 1997,20( 1 ) :57-60.
  • 5Hull D G, Speyer J L. Optimal reentry and plane-change trajectories [ J ]. Journal of the Astronautical Sciences, 1982,30(2) :117-130.
  • 6Frabien B C. Some tools for the direct solution of optimal control problems [ J ]. Advances in Engineering Software, 1998,29( 1 ) :45-61.
  • 7David Marcelo Garza. Application of automatic differentia- tion to trajectory optimization via direct multiple shooting [ D ]. Austin, Texas : The University of Texas at Austin, 2003.
  • 8Cheng P, Shen Z, Lavalle S M. RRT--Based trajectory de- sign for autonomous automobiles and spacecraft [ J ]. Ar- chives of Control Sciences,2001,11 (3-4) :51-78.
  • 9Conway B A, Larson K M. Collocation versus differential inclusion in direct optimization [ J ]. Journal of Guidance, Control, and Dynamics, 1998,21 (5) :780-785.
  • 10Anhtuan D Ngo. A fuel-optimal trajectory for a constrained hypersonic vehicle using a direct transcription method [ C ]//Proceedings on Aerospace Conference. Big Sky, Montana: IEEE, 2004 : 2704 -2709.

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部