期刊文献+

基于眼脑数据和问卷分析的泳装图像情感因子空间构建 被引量:1

Establishment of emotional factor space for swimsuit image based on eye tracking,electroencephalography data and questionnaire analysis
下载PDF
导出
摘要 人工智能服装设计中较为重要的步骤是将服装情感设计语言转换为计算机标注语言,而当前研究领域主要是单纯依靠问卷调查结果,这导致标注结果过于主观。针对这一问题,文章以泳装为例,通过发放调查问卷收集主观感性数据,利用眼动仪、脑电系统收集客观生理信号与主观数据进行对比分析,同时验证主观数据的可靠性;对调查问卷数据进行主成分分析和因子分析,最终建立泳装图像情感因子空间。情感因子空间的构建可降低计算机提取服装情感信息特征的难度,有利于实现对泳装图像的识别、分类、检索等后续工作。 An important step in artificial intelligence clothing design is to transform clothing emotional design language into computer annotation language.However,current research mainly relies on questionnaire survey results,which leads to unreliable subjective annotation results.In order to solve this problem,objective physiological signals was collected by eye tracker and electroencephalography(EEG)systems and subjective perceptual data was collect with questionnaire,they were compared and analyzed and the reliability of subjective data was verified.Principal component analysis and factor analysis were carried out on the questionnaire data to establish the final emotional factor space of the swimsuit image.The construction of emotional factor space can reduce the difficulty of extracting emotional information features of clothing by computer,and is conducive to the recognition,classification,retrieval and other follow-up work of swimsuit image.
作者 高君 王伟珍 GAO Jun;WANG Weizhen(School of Fashion,Dalian Polytechnic University,Dalian,Liaoning 116034,China;Clothing Human Factors and Intelligent Design Research Center,Dalian Polytechnic University,Dalian,Liaoning 116034,China)
出处 《毛纺科技》 CAS 北大核心 2022年第6期73-79,共7页 Wool Textile Journal
基金 辽宁省社会科学规划基金项目(L20BJY038)。
关键词 泳装图像 图像情感 情感因子空间 眼动追踪 脑电信号 swimsuit image image emotion emotional factor space eye tracking EEG signal
  • 相关文献

参考文献4

二级参考文献41

  • 1张鹏,王润生.静态图像中的感兴趣区域检测技术[J].中国图象图形学报(A辑),2005,10(2):142-148. 被引量:32
  • 2卢英俊,周竣,张韶岷,张恒义,郑筱祥.Inhibitory effects of jujuboside A on EEG and hippocampal glutamate in hyperactive rat[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(4):265-271. 被引量:10
  • 3TIMOTHEE J, OUERHANI N, WARTBURG R V, et al. As- sessing the Contribution of Color in Visual Attention [ J ]. Journal of Computer Vision and Image Understanding, 2005,100 ( 1/2 ) : 107-123.
  • 4YANG X K,LING W S,LU Z K,et al. Just Noticeable Distor- tion Model and Its Applications in Video Coding [ J ]. Signal Processing: Image Communication,2005,20(7) :662-680.
  • 5HUANG C, LIU Q, YU S. Regions of Interest Extraction from Color Image Based on Visual Saliency [ J ]. The Journal of Su- percomputing.2011.58 ( 1 ) :2-33.
  • 6李业伟.基于感知的彩色图像增强和分割算法研究[D].济南:山东师范大学,2012.
  • 7LIU H, HEYNDERICKX I. A Perceptually Relevant No-ref- erence Blockiness Metric Based on Local Image Characteris- tics[ J]. Signal Process ,2009,263540 : 1-14.
  • 8RAJASHEKAR U, BOVIK A C, CORMACK L K. Gaffe:A Gaze-attentive Fixation Finding Engine[ J]. Image Process, 2008,17:564-573.
  • 9赖永秀,高婷婷,吴丹,尧德中.音乐情绪感知的脑电研究[J].电子科技大学学报,2008,37(2):301-304. 被引量:21
  • 10张明廉,袁国桢,姚建军.音乐治疗对焦虑症患者情绪改善的疗效观察[J].中国康复医学杂志,2008,23(8):746-747. 被引量:27

共引文献47

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部