期刊文献+

一种基于残差结构的车道线检测方法 被引量:5

A lane line detection method based on residual structure
下载PDF
导出
摘要 提出了一种基于车道线特征的残差因子分解网络实现精确车道线分割的方法,该法采用笔者所提的语义分割网络实现车道线语义分割,通过编码器提取车道线的特征信息,再使用解码器恢复图像信息。在编码器中增加的残差层能更好地处理边缘信息与相似信息,提取到更多的特征信息。用霍夫线拟合方法组成一条可视化的车道线。训练时先对车道线分割训练集进行增强,使用对抗生成网络对公开数据集进行数据增强,自动实现白天到夜晚的转换,生成弱光照场景下的图片,提高训练数据的泛化性。实验证明:笔者算法在保持速度的前提下,能够大大提高分割准确率,与其他车道线分割算法相比,CULane数据集的准确率可提高到74.7%。 A residual factorization network based on lane line features is proposed to achieve precise lane line segmentation.The semantic segmentation network is proposed to achieve lane line semantic segmentation,the feature information of the lane line is extracted through the encoder,and then the decoder is used to restore the image information.The residual layer added in the encoder can better process edge information and similar information,and extract more feature information.The Hough line fitting method is used to compose a visualized lane line.In the training process,the lane line segmentation training set is enhanced firstly,then the generative adversarial network(GAN)is used to enhance the public data set.It can automatically realize the conversion from day to night,generate pictures under weak lighting scenes,and improve the generalization of training data.Experimental analysis proves that the algorithm can greatly improve the segmentation precision while maintaining the speed.Compared with other lane line segmentation algorithms,the segmentation precision on the CULane data set is increased to 74.7%.
作者 郑河荣 程思思 王文华 张梦蝶 ZHENG Herong;CHENG Sisi;WANG Wenhua;ZHANG Mengdie(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;Zhejiang SatelliteTV Channel,Zhejiang Radio and Television Group,Hangzhou 310005,China;Research and Development Center,Zhejiang SUPCON Information Technology Co.,Ltd.,Hangzhou 310052,China)
出处 《浙江工业大学学报》 CAS 北大核心 2022年第4期365-371,共7页 Journal of Zhejiang University of Technology
关键词 生成对抗网络 语义分割网络 残差结构 generative adversarial network semantic segmentation network residual structure
  • 相关文献

参考文献7

二级参考文献51

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2孟章荣.各种颜色模型选用需求分析[J].中国图象图形学报(A辑),1996,1(3):238-241. 被引量:20
  • 3庄越挺.智能多媒体信息分析与检索的研究:博士学位论文[M].杭州:浙江大学,1998..
  • 4Wu V., Manmatha R., Riseman E.M.. Text finder: An automatic system to detect and recognize text in images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11): 1224~1229.
  • 5Lienhart R., Effelsberg W.. Automatic text segmentation and text recognition for video indexing. Multimedia System, 2000, 8(1): 69~81.
  • 6Jain A.K., Yu B.. Automatic text location in images and video frames. Pattern Recognition, 1998, 31(12): 2055~2076.
  • 7Li H., Doermann D., Kia O.. Automatic text detection and tracking in digital video. IEEE Transactions on Image Processing, 2000, 9(1): 147~156.
  • 8Jain A.K., Bhattacharjee S.. Text segmentation using Gabor filters for automatic document processing. Machine Vision and Applications, 1992, 5(3): 169~184.
  • 9Lienhart R., Wernicke A.. Localizing and segmenting text in images and videos. IEEE Transactions on Circuits and System for Video Technology, 2002, 12(4): 256~268.
  • 10Sato T., Kanade T., Hughes E.K., Smith M.A.. Video OCR for digital news archives. In: Proceedings of the IEEE International Workshop on Content-Based Access of Image and Video Database CAVID, India, Bombay, 1998, 52~60.

共引文献512

同被引文献61

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部