期刊文献+

基于DSP的柴油机振动信号小波降噪实时性研究 被引量:2

Real-Time Research of Diesel Engine Vibration Signal Denoising by Wavelet Based on DSP
下载PDF
导出
摘要 针对柴油机实时监测系统采集的振动信号采样频率高、实时降噪困难,而传统的实时性评价方法难以准确描述数字信号处理器(DSP)中所需降噪时间的问题,提出基于DSP的小波变换指令周期模型作为实时性的评价依据,对比不同小波算法的实时性优劣;根据采集的柴油机缸盖振动信号特征,提出基于变异系数定权法的综合评价指标,从降噪效果和实时性两个角度优选了小波基函数.结果表明:该模型与DSP中小波算法的实时性吻合较好,且优选的小波降噪参数能满足采样频率为25 kHz下的实时降噪需求. In view of the high sampling frequency of vibration signals collected by the diesel engine real-time monitoring system and the difficulty of real-time noise reduction,the traditional real-time evaluation method is difficult to accurately describe the noise reduction time needed in digital signal processor(DSP).A wavelet transform instruction period model based on DSP was proposed and the real-time performance of different wavelet algorithms was analyzed and compared.According to characteristics of the vibration signals collected from the cylinder head of diesel engine,a comprehensive evaluation index based on variation coefficient was proposed,and the number of wavelet decomposition layers and wavelet basis function were optimized from the aspects of noise reduction effect and real-time.The results show that the model is in good agreement with the real-time performance of wavelet algorithm in DSP,and the optimized wavelet denoising parameters can meet the real-time noise reduction requirements at 25 kHz sampling frequency.
作者 应铭 冯国胜 贾素梅 霍肖楠 马春庭 Ying Ming;Feng Guosheng;Jia Sumei;Huo Xiaonan;Ma Chunting(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China;School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Hebei Key Laboratory of Power and Transmission Control of Construction Machinery,Shijiazhuang Tiedao University,Shijiazhuang 050043,China;Hebei Juntao Technology Company Limited,Shijiazhuang 050000,China)
出处 《内燃机学报》 EI CAS CSCD 北大核心 2022年第4期345-350,共6页 Transactions of Csice
基金 石家庄市重点研发计划资助项目(201080044A).
关键词 柴油机 数字信号处理器 振动噪声 小波变换 实时性 diesel engine digital signal processor(DSP) vibration noise wavelet transform real-time
  • 相关文献

参考文献5

二级参考文献37

共引文献96

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部