期刊文献+

基于体感手套的无线体感鼠标设计

Wireless Somatosensory Mouse Design Based on Somatosensory Glove
下载PDF
导出
摘要 传统意义上的鼠标虽然控制精度高,且能够无线操控,但长时间使用而带来的弊端是不可忽视的,“鼠标手”越来越成为现代人的通病。本文针对此问题而开展研究,采用弯曲度传感器和姿态传感器获取手部状态信息,电脑端辅助控制程序来解析指令并控制电脑。实验结果表明,该设计能代替鼠标和幻灯片切换笔实现一些基本的操作,例如手背倾斜即可移动鼠标,挥一挥手便可对PPT进行翻页,延迟基本在1s左右,很大程度上帮助使用者克服了“鼠标手”的通病。 Traditional mouse has high control precision and can be controlled wirelessly, but the disadvantages brought by longterm use cannot be ignored. “Mouse hand” has increasingly become a common problem of modern people. This design is developed in response to this problem. The flex sensor and the electronic gyroscope sensor are used to obtain the hand state information, and the computer-side auxiliary control program parses the instructions and controls the computer. The experimental results show that this design can replace the mouse and PPT switch pen to make some basic operations, such as tilting the back of the hand to move the mouse and waving the hand to turn PPT pages, the delay is basically within 1 seconds. So, this design helps users to overcome the common problem of “Mouse hand” to a great extent.
作者 张珈瑜 吴训成 罗丹 徐博文 韩霁云 ZHANG Jiayu;WU Xuncheng;LUO Dan;XU Bowen;HAN Jiyun(School of Electric and Electronic Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《信息与电脑》 2022年第7期177-179,共3页 Information & Computer
关键词 体感手套 无线控制 同步控制 somatosensory glove remote-control real-time-control
  • 相关文献

参考文献8

二级参考文献43

  • 1余志鹏,熊剑,衷卫声,郭杭,钟启林.基于秩卡尔曼滤波的室内行人航位推算算法[J].仪器仪表学报,2020(5):214-220. 被引量:20
  • 2熊根良,胡泓,张春慨.同步带传动机械手的建模与振动控制研究[J].机械传动,2006,30(6):58-60. 被引量:5
  • 3刘林,伍平平,熊巍.虚拟超市认知康复训练系统开发关键技术研究[J].图学学报,2014,35(1):105-109. 被引量:7
  • 4Hoffman F, Heyer P, Hommel G. Velocity Profile-based Recognition of Dynamic Gestures with Discrete Hidden Markov Models[C] //Proc. of 1997 Gesture Workshop. Gif-sur-Yvette, France: [s. n.] , 1997: 81-95.
  • 5Hinckley K, Pierce J, Sinclair M, et al. Sensing Techniques for Mobile Interaction[C] //Proc. of Conference on User Interface Software and Technology. San Diego, California, USA: [s. n.] , 2000: 91-100.
  • 6Chambers G S, Venkatesh S, West G, et al. Segmentation of Intentional Human Gestures for Sports Video Annotation[C] //Proc. of the 10th International Multimedia Modeling Conference. Brisbane, Australia: [s. n.] , 2004: 124-129.
  • 7Mantyjarvi J, Juha K, Panu K, et al. Enabling Fast and Effortless Customisation in Accelerometer-based Gesture Interaction[C] // Proc. of the 3rd International Conference on Mobile and Ubiquitous Media. Maryland, USA: [s. n.] , 2004: 25-31.
  • 8Benbasat A Y, Paradiso J A. An Inertial Measurement Framework for Gesture Recognition and Applications[C] //Proc. of the International Gesture Workshop on Gesture and Sign Languages in Human-computer Interaction. London, UK: [s. n.] , 2001: 9-20.
  • 9Junker H. Gesture Spotting with Body-worn Inertial Sensors to Detect User Activities[J]. Pattern Recognition, 2008, 41(6): 2010- 2024.
  • 10Duda R O, Hart P E, Stork D G. 模式分类[M]. 李宏东, 姚天翔,译. 北京: 机械工业出版社, 2006.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部