期刊文献+

基于机器学习的高速复杂流场流动控制效果预测分析 被引量:5

Predictive analysis of flow control in high-speed complex flow field based on machine learning
下载PDF
导出
摘要 流动控制激励器是主动流动控制技术的核心,其设计水平和工作性能直接决定了主动流动控制的应用效果和应用方向。为了获得流动控制激励器的作用规律,需要大量实验研究激励参数对控制效果参数的影响,实验代价较大。利用逆向等离子体合成射流激波控制实验数据,采用机器学习中的高斯过程回归模型,获得激励器参数(头锥直径、腔体体积、放电电容、出口直径)到控制效果参数(最大脱体距离)的映射规律,对比多种核函数下高斯过程回归的预测效果,采用特征重要性分析方法分析激励器参数对控制效果参数的影响程度。结果表明:对于小样本问题,采用2次多项式核函数Poly2的高斯过程回归预测精度最高。在特征重要性分析上,头锥直径对最大脱体距离的影响程度最大;其次是放电电容和腔体体积,2个参数的影响相近;出口直径影响最小。本文工作可为高速复杂流场流动控制实验中激励器各项参数的设置提供一定参考。 The flow control actuator is the core of the active flow control technology. The design level and performance of actuator directly determine the application direction and effect of active flow control. In order to obtain the action law of the flow control actuator, a large number of experiments are needed to study the influence of excitation parameters on control effect parameters, and the experimental cost is large. In this paper, the experimental data of jet shock control in reverse plasma synthesis are used, and the Gaussian process regression model in machine learning is used to obtain the mapping law from the actuator parameters(head cone diameter, cavity volume, discharge capacitance and outlet diameter) to the control effect parameters(maximum out of body distance). We compare the prediction effects of Gaussian process regression under various kernel functions, and analyze the influence of actuator parameters on control effect parameters by using the characteristic importance analysis method.The results show that for this small sample problem, Gaussian process regression with the quadratic polynomial kernel function Poly2 obtains the highest accuracy;in characteristic importance analysis, the head cone diameter has the greatest influence on the maximum separation distance, followed by discharge capacitance and cavity volume. The influence of these two parameters is similar, and the influence of the outlet diameter is the least. The work of this paper can provide some guidance for the setting of various parameters of the actuator in the flow control experiment of the high-speed complex flow field.
作者 余柏杨 吕宏强 周岩 罗振兵 刘学军 YU Baiyang;LYU Hongqiang;ZHOU Yan;LUO Zhenbing;LIU Xuejun(Key Laboratory of Pattern Analysis and Machine Intelligence,Ministry of Industry and Information Technology,College of Computer Science and Technology/College of Artificial Intelligence,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;State Key Laboratory of Aerodynamics,Mianyang 621000,China;Laboratory of Aerodynamic Noise Control,Mianyang 621000,China;Collaborative Innovation Centre of Novel Software Technology and Industrialization,Nanjing 210023,China;College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)
出处 《实验流体力学》 CAS CSCD 北大核心 2022年第3期44-54,共11页 Journal of Experiments in Fluid Mechanics
基金 航空科学基金(2018ZA52002,2019ZA052011) 空气动力学国家重点实验室基金(SKLA20180102) 气动噪声控制重点实验室基金(ANCL20190103)。
关键词 主动流动控制 激励器 机器学习 高斯过程 特征重要性分析 active flow control exciter machine learning Gaussian process feature importance analysis
  • 相关文献

参考文献20

二级参考文献201

共引文献837

同被引文献69

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部