期刊文献+

InP HEMT空腔栅结构器件制备及性能

Preparation and Performances of InP HEMT Device with Cavity Gate Structure
下载PDF
导出
摘要 InP HEMT具有优异的高频特性以及良好的散热、击穿和噪声性能,已成为太赫兹应用领域的重要器件之一。工程化应用要求器件具有厚的钝化保护层,厚钝化层又导致器件频率特性变差。针对这一问题,在自主的工艺线上制备了源漏间距2.5μm、栅长100 nm的T型栅InP基InAlAs/InGaAs HEMT。通过采用高In组分的InGaAs沟道层提升了该层的载流子迁移率和器件的直流跨导,最大直流跨导为1700 mS/mm;通过制作空腔结构解决了厚钝化层带来的栅寄生电容大的问题,器件频率特性有很大提升,截止频率为300 GHz,最大振荡频率为700 GHz。微波测试结果表明,该器件在加厚钝化保护层后依然保持了良好的频率特性,可用于220 GHz放大器工程化应用领域。 InP HEMT has excellent high frequency characteristics,good heat dissipation,breakdown and noise performances,and has become one of the most important devices in terahertz frequency application field.Engineering applications require devices to have thick passivation protective layer,which leads to poor frequency characteristics of devices.To solve this problem,the T-gate InP-based InAlAs/InGaAs HEMTs with the gate length of 100 nm and the source-drain space of 2.5μm were successfully prepared on the independent process line.The carrier mobility of the channel layer and DC transconductance of device were improved by adopting high In composition of InGaAs channel layer,and the maximum DC transconductance is 1700 mS/mm.By making a cavity structure,the problem of large parasitic capacitance of the gate caused by thick passivation layer was solved.The frequency characteristics of the device were greatly improved,with a cutoff frequency of 300 GHz and a maximum oscillation frequency of 700 GHz.The microwave test results show that the device still retains good frequency characteristics after thickening the passivation protective layer,and can be used in 220 GHz amplifier engineering application fields.
作者 周国 毕胜赢 陈卓 张力江 Zhou Guo;Bi Shengying;Chen Zhuo;Zhang Lijiang(The 13th Research Institute,CETC,Shijiazhuang 050051,China)
出处 《半导体技术》 CAS 北大核心 2022年第6期443-447,共5页 Semiconductor Technology
基金 国家重点研发计划项目(2018YFE0202500)。
关键词 InP HEMT 空腔 太赫兹 寄生电容 可靠性 InP HEMT cavity terahertz parasitic capacitance reliability
  • 相关文献

参考文献4

二级参考文献63

  • 1Li D L and Zeng Y P 2006 Chin.Phys.15 2735.
  • 2Cheng Z Q,Cai Y,Liu J,Zhou Y G,Lau K M and Chen J K 2007 Chin.Phys.16 3494.
  • 3Li H O,Huang W,Tang C W,Deng X F and Lau K M 2011 Chin.Phys.B 20 068502.
  • 4Chau R,Datta S,Doczy M,Doyle B,Jin B,Kavalieros J,Majumdar A,Metz M,and Radosavljevic M 2005 IEEE Trans.Nanotechnol.4 153.
  • 5Murata K,Sano K,Kitabayashi H,Sugitani S,Sugahara H and Enoki T 2004 IEEE Journal of Solid-State Circuits 39 207.
  • 6Lai R,Mei X B,Deal W R,Yoshida W,Kim Y M,Liu P H,Lee J,Uyeda J,Radisic V,Lange M,Gaier T,Samoska L and Fung A 2007 IEEE International Electron Devices Meeting,December 10–12,2007,Washington DC,USA,p.609.
  • 7Kim D H and Alamo J A 2010 IEEE Electron Device Lett.31 806.
  • 8Zimmer T,Bodi D O,Dumas J M,Labat N,Touboul A and Danto Y 1992 Solid-State Electron.35 1543.
  • 9Vasallo B G,Rodilla H,Gonzalez T,Moschetti G,Grahn J and Mateos J 2010 J.Appl.Phys.108 094505.
  • 10Kim D H,Alamo J A,Lee J H and Seo K S 2006 Journal of Semiconductor Technology and Science 6 146.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部