期刊文献+

基于Matlab封闭系统中SIRS传染病模型的问题分析

Problem analysis of SIRS infectious disease model in closed system based on Matlab
下载PDF
导出
摘要 在当下疫情多发需及时管控的背景下,对传染病进行定量研究其传播规律并建立传染病模型,可以为预测、控制、防范传染病大规模传播提供可靠的信息的研究显得尤为重要。文章利用微分方程理论针对假设的多种情境下建立传染病动力学SIRS模型来模拟传染病的传播过程及规律,并利用微分方程组针对多种不同情况使用MTALAB得出数值解。当初始潜伏者为密闭环境下工作人员及其它人员的情况下,分析得出其只对传染病传播期有影响,在传染病病情稳定后S、I、R三类人群的比率不变。在工作人员适当防护条件下改变了在公共场所内不同人群感染者的有效接触率,达到有效控制疫情传播方便及时管控的效果,因而得到了与实际贴切的模型,并且易于推广。 Under the background that the epidemic situation is frequent and needs to be controlled in time, it is particularly important to quantitatively study the spread law of infectious diseases and establish the model of infectious diseases, which can provide reliable information for predicting, controlling and preventing the large-scale spread of infectious diseases. In this paper,the SIRS model of infectious disease dynamics is established by using differential equation theory to simulate the spreading process and laws of infectious diseases under various hypothetical situations, and the numerical solutions are obtained by using MTALAB for various different situations by using differential equation groups. When the initial The Infiltrator is workers and other people in a closed environment, it can be concluded that it only affects the spreading period of infectious diseases, and the ratio of S, I, and R groups remains unchanged after the infectious diseases are stable. Under the proper protection conditions of staff, the effective contact rate of different groups of infected people in public places has been changed, and the effect of effective control of epidemic spread and timely control has been achieved. Therefore, a model that is appropriate to the actual situation has been obtained, and it is easy to popularize.
作者 易继开 王家曦 李虹霖 唐圣涵 YI Jikai;WANG Jiaxi;LI HongLin;TANG Shenghan(Shenyang Aerospace University,Shen yang,Liaoning,110136,China)
出处 《长江信息通信》 2022年第6期39-43,共5页 Changjiang Information & Communications
关键词 传染病动力学模型——SIRS模型 MATLAB 微分方程 Dynamic model of infectious disease transmission—SIRS Model MATLAB differential equation
  • 相关文献

参考文献6

二级参考文献77

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部