摘要
为更好地解决机器人路径规划问题,基于椭圆动态限制和免疫机理提出一种路径规划算法。首先,在全向空间内依据疫苗启发因子生成初始抗体种群。其次,将节点作为基本计算单元构建节点存储结构,避免局部路径信息重复计算,节点变异的同时更新节点信息。然后,根据路径值构建100%置信水平下的椭圆搜索区域,在不影响最优路径求解的同时动态缩小搜索区域,通过节点删除的两层限制不断删除无效节点,提高算法搜索效率。最后,将本文算法与其他3种算法对比,仿真结果表明本文算法搜索时间平均减少了77.24%,搜索的节点数量平均减少了55.54%。
This study proposes an algorithm based on the dynamic restriction of an ellipse and immune mechanism to solve robot path planning problems.First,the initial antibody population is generated in the omnidirectional space by the vaccine-inspired factors.Next,a node storage structure is introduced as the primary computing unit to avoid repeated calculation of local path information.Node mutation is used to update node information.Then,an ellipse search area is then constructed under the confidence level of 100%by the path value,and the ellipse search area is dynamically reduced without affecting the optimal path solution.Invalid nodes are deleted continuously through the node deletion under two-level restrictions,which improves the search efficiency.Finally,the proposed algorithm was compared with other algorithms,where the simulation results verified the certainty and effectiveness of the algorithm.The search time is reduced by 77.24%,and the number of nodes is reduced by 55.54%.
作者
岳迪
范俊岩
刘强
洪露
YUE Di;FAN Junyan;LIU Qiang;HONG Lu(School of Electronic Engineerings Jiangsu Ocean University y Lianyungang 222005,China;School of Mechanical and Ocean Engineering,Jiangsu Ocean University,Lianyungang 222005,China;School of Computer Science and Engineerings Hunan Institute of Technology,Hengyang 421002,China)
出处
《信息与控制》
CSCD
北大核心
2022年第3期339-348,376,共11页
Information and Control
基金
连云港市“海燕计划”项目
“521工程”项目
研究生科研创新计划(KYCX20_2942)。
关键词
动态限制
免疫机理
存储结构
置信水平
节点删除
dynamic restriction
immune mechanism
storage structure
confidence level
node deletion