摘要
研究了在仅有概率分布的部分信息可用的情况下,条件在险价值(CoVaR)和条件期望短缺(CoES)的最坏可能值。在边缘分布的前两阶矩已知时,给出了CoVaR和CoES的最坏可能值以及显式解。并研究了均值和协方差信息下的CoVaR和CoES的最坏可能值。
In this paper,we study the worst-case conditional value-at-risk(CoVaR) and conditional expected shortfall(CoES) in a situation where only partial information on the underlying probability distribution is available.In the case of the first two marginal moments are known,the closed-form solution and the value of the worst-case CoVaR and CoES are derived.The worst-case CoVaR and CoES under mean and covariance information are also investigated.
作者
毛甜甜
赵琦
吴钦宇
Tiantian Mao;Qi Zhao;Qinyu Wu(Department of Statistics and Finance,School of Management,University of Science and Technology of China,Hefei 230026,China)
出处
《中国科学技术大学学报》
CAS
CSCD
北大核心
2022年第5期31-39,I0002,共10页
JUSTC
基金
supported by the National Natural Science Foundation of China (71671176,71871208)。
关键词
条件在险价值
条件期望短缺
分布不确定性
conditional value-at-risk
conditional expected shortfall
distributional uncertainty