期刊文献+

矩信息下条件在险价值和期望短缺的最坏可能值

Worst-case conditional value-at-risk and conditional expected shortfall based on covariance information
下载PDF
导出
摘要 研究了在仅有概率分布的部分信息可用的情况下,条件在险价值(CoVaR)和条件期望短缺(CoES)的最坏可能值。在边缘分布的前两阶矩已知时,给出了CoVaR和CoES的最坏可能值以及显式解。并研究了均值和协方差信息下的CoVaR和CoES的最坏可能值。 In this paper,we study the worst-case conditional value-at-risk(CoVaR) and conditional expected shortfall(CoES) in a situation where only partial information on the underlying probability distribution is available.In the case of the first two marginal moments are known,the closed-form solution and the value of the worst-case CoVaR and CoES are derived.The worst-case CoVaR and CoES under mean and covariance information are also investigated.
作者 毛甜甜 赵琦 吴钦宇 Tiantian Mao;Qi Zhao;Qinyu Wu(Department of Statistics and Finance,School of Management,University of Science and Technology of China,Hefei 230026,China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2022年第5期31-39,I0002,共10页 JUSTC
基金 supported by the National Natural Science Foundation of China (71671176,71871208)。
关键词 条件在险价值 条件期望短缺 分布不确定性 conditional value-at-risk conditional expected shortfall distributional uncertainty
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部