期刊文献+

基于空间结构的无线传感器网络缺失值估计方法

Spatial Structure Based Missing Value Estimation for Wireless Sensor Networks
下载PDF
导出
摘要 为了保证无线传感器网络中数据的完整性,针对感知数据在传输中存在数据丢失或者数据异常的问题,提出一种基于空间结构的无线传感器网络缺失值估计方法。矩阵补全方法是估计缺失值的有效方法,但目前尚未考虑到数据间的连续性而导致估计误差较大。本文结合传感器节点数据具有时空相关性的特点,通过增加正则化项的方式来约束矩阵补全的解空间对数据进行缺失值估计。仿真时采用伯克利英特尔实验室的传感器数据,通过Matlab软件对模型进行测试并分析仿真结果。实验结果表明:该算法对连续多个数据的缺失值估计效果理想,估计误差始终保持在较低水平。 To address the problems of data loss or data anomalies in the transmission of sensed data,the missing value estimation algorithm based on spatial structure was proposed to guarantee the integrity of data in wireless sensor networks.The matrix complement method is an effective method for estimating missing values.However,the continuity of data has not yet taken into account the large estimation error.This paper combines the characteristics of spatio-temporal correlation of sensor node data and constrains the matrix complementation solution space to estimate missing data by adding regularization terms.The Berkeley Intel lab’s sensor data streams were adopted in simulation as empirical data,the simulation results were estimated with model by Matlab software.Simulation result proved that algorithm achieved ideal effect in estimating consecutive data,and estimation error stayed at a lower level.
作者 李微微 马卫 Li Weiwei;Ma Wei(Hotel Management School,Nanjing Tourism Vocational College,Nanjing Jiangsu,211000)
出处 《电子测试》 2022年第12期44-46,12,共4页 Electronic Test
基金 江苏省青蓝工程学术带头人项目 国家文化和旅游部文化艺术职业教育和旅游职业教育提质培优行动计划“双师型”师资培养扶持项目 江苏省社科应用研究精品工程课题(No.21SYB-138) 科研创新团队资助项目(No.2021KYTD04) 江苏省高校自然科学基金(No.17KJB520013)。
关键词 无线传感器网络 缺失值估计 空间结构 wireless sensor networks missing value estimation spatial structure
  • 相关文献

参考文献3

二级参考文献70

  • 1Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 2Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 3Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 4Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 5Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 6Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.
  • 7Deshpande A, Guestrin C, Hong W, Madden S. Exploiting correlated attributes in acquisitional query processing//Proceedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005: 143-154.
  • 8Chu D, Deshpand A, Hellerstein J M, Hong W. Approximate data collection in sensor networks using probabilistic models//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, 2006:48.
  • 9Zhu X, Zhang S, Zhang J, Zhang C. Cost-sensitive imputing missing values with ordering//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007:1922 -1923.
  • 10Setiawan N A, Venkatachalam P A, Hani A F M. Missing attribute values prediction based on artificial neural network and rough set theory//Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics. Sanya, Hainan, China, 2008, 1:306-310.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部