期刊文献+

HTGR高温气冷反应堆的高温氦气取样研究

Study on high temperature helium sampling of HTGR high temperature gas cooled reactor
下载PDF
导出
摘要 高温气冷堆(HTGR)因其产生高温氦气的能力及其固有的安全特性而特别具有吸引力。确认了反应堆特性和反应堆性能,描述了HTTR高温试验运行的结果,并对反应堆运行进行了监测,以证明运行的安全性和稳定性。同时,研究了HTGR高温氦取样回路(HTHSL)在蒸汽发生器(SG)中的输运(沉积)行为和固体裂变产物总量分别设计。通过基于热工水力学分析的优化设计和仿真,沉积取样装置(DSD)的3套管结构能够实现均匀的全程温度控制。在相应模拟的基础上,改进了HTGR高温气冷反应堆的高温氦气取样回路,可用于SG高温氦中重要核的取样。这些方案为获得高温氦源项提供了有效的解决方法,为高温气冷堆源项的分析提供了更深入的认识。 High Temperature Gas-cooled Reactor(HTGR)is particularly attractive because of its ability to produce high temperature helium and its inherent safety characteristics.The reactor characteristics and reactor performance were confirmed,the results of HTTR high temperature test operation were described,and the reactor operation was monitored to prove the safety and stability of operation.At the same time,the transport(deposition)behavior of HTGR High Temperature Helium Sampling Loop(HTHSL)in Steam Generator(SG)and the total amount of solid fission products are designed respectively.Through the optimization design and simulation based on thermal hydraulic analysis,the 3 casing structure of Deposition Sampling Device(DSD)can realize uniform whole process temperature control.Based on the corresponding simulation,the high temperature helium sampling circuit of HTGR high temperature gas cooled reactor is improved,which can be used to sample important nuclei in SG high temperature helium.These schemes provide effective solutions for obtaining the source term of high-temperature helium and provide a deeper understanding for the analysis of the source term of high-temperature gas-cooled stack.
作者 张超 ZHANG Chao(Huaneng Shandong Shidaowan Nuclear Power Co.,Ltd.,Weihai 264200,Shandong China)
出处 《粘接》 CAS 2022年第7期85-88,共4页 Adhesion
基金 华能集团总部科技项目(项目编号:HNKJ18-H40)。
关键词 高温气冷反应堆(HTGR) 高温氦取样回路(HTHSL) 温度控制 仿真 High Temperature Gas-cooled Reactor(HTGR) High Temperature Helium Sampling Loop(HTHSL) temperature control simulation
  • 相关文献

参考文献1

二级参考文献14

  • 1Kikstra J F. Modeling, Design and Control of a Cogenerating Nuclear Turbine Plant [D]. Delft, Netherlands: Delft University of Technology, 2001.
  • 2Verkerk E C. Dynamics of the Pebble-Bed Nuclear Reactor in the Direct Brayton Cycle [D]. Delft, Netherlands: Delft University of Technology, 2000.
  • 3Pra F, Tochon P, Mauget C, et al. Promising designs of compact heat exchangers for module HTRs using the Bryton cycle [J]. Nuclear Engineering and Design, 2008, 238: 3160 - 3173.
  • 4Kn6ner D. Numerical Schemes for Conservation Laws [M]. New York, USA John Wiley Sons, 1997.
  • 5LeVeque R J, Yee H C. A study of numerical methods for hyperbolic conservation laws with stiff source terms [J]. Journal of Computational Physics, 1990, 86 : 187 - 210.
  • 6Embid P, Goodman J, Majda A. Multiple steady states for 1 D transonic flow [J]. SIAM Journal on Scientific and Statistical Computing, 1984, $(1) : 21 - 41.
  • 7Beam R M, Warming R F. An implicit finite difference algorithm for hyperbolic systems in conservation-law form [J]. Journal of Computational Physics, 1967, 22(1) 87 - 110.
  • 8Harten A, Engquist B, Osher S, et al. Uniformly high order accurate non-oscillatory schemes III [J]. Journal of Computational Physics, 1987, 71(2) : 231 - 303.
  • 9Petersen H. The Properties of Helium: Density, Specific Heats Viscosity and Thermal Conductivity at Pressures from 1 to 100 bar and from Room Temperature to about 1 800 K, Ris/5 Report No. 224 [R]. Copenhagen, Denmark: Danish Atomic Energy Commission, 1970.
  • 10Erdo an M E, Imark C E. The effect of duct shape on the Nusselt number [J]. Mathematical and Computational Applications, 2005, 10(1) : 79 - 88.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部