期刊文献+

Data-driven Stochastic Programming with Distributionally Robust Constraints Under Wasserstein Distance:Asymptotic Properties

原文传递
导出
摘要 Distributionally robust optimization is a dominant paradigm for decision-making problems where the distribution of random variables is unknown.We investigate a distributionally robust optimization problem with ambiguities in the objective function and countably infinite constraints.The ambiguity set is defined as a Wasserstein ball centered at the empirical distribution.Based on the concentration inequality of Wasserstein distance,we establish the asymptotic convergence property of the datadriven distributionally robust optimization problem when the sample size goes to infinity.We show that with probability 1,the optimal value and the optimal solution set of the data-driven distributionally robust problem converge to those of the stochastic optimization problem with true distribution.Finally,we provide numerical evidences for the established theoretical results.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2021年第3期525-542,共18页 中国运筹学会会刊(英文)
基金 the National Natural Science Foundation of China(Nos.11991023,11901449,11735011).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部