期刊文献+

A Levenberg–Marquardt Method for Solving the Tensor Split Feasibility Problem

原文传递
导出
摘要 This paper considers the tensor split feasibility problem.Let C and Q be non-empty closed convex set and A be a semi-symmetric tensor.The tensor split feasibility problem is to find x∈C such that Axm−1∈Q.If we simply take this problem as a special case of the nonlinear split feasibility problem,then we can directly get a projection method to solve it.However,applying this kind of projection method to solve the tensor split feasibility problem is not so efficient.So we propose a Levenberg–Marquardt method to achieve higher efficiency.Theoretical analyses are conducted,and some preliminary numerical results show that the Levenberg–Marquardt method has advantage over the common projection method.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2021年第4期797-817,共21页 中国运筹学会会刊(英文)
基金 the National Natural Science Foundation of China(Nos.11101028 and 11271206) National Key R&D Program of China(No.2017YFF0207401) the Fundamental Research Funds for the Central Universities(No.FRF-DF-19-004).
  • 相关文献

参考文献2

二级参考文献41

  • 1Buchberger B. GrSbner basis: an algorithmic method in polynomial ideal theory. In: Bose N K, ed. Multidimensional System Theory. Dordrecht, Boston, Lancaster: D Reidel Publishing Company, 1985, 184-232.
  • 2Cai D, He X, Han J. Tensor space model for document analysis. In: International Conference on Research and Development in Information Retrieval. 2006, 625-626.
  • 3Chang K, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6:507-520.
  • 4Chang K, Zhang T. On the uniqueness and non-uniqueness of the Z-eigenvector for transition probability tensors. J Math Anal Appl, 2013, 408:525-540.
  • 5Clauset A. Finding local community structure in networks. Phys Rev E, 2005, 72: 026132.
  • 6Comon P, Luciani X, De Almeida A. Tensor decompositions, alternating least squares and other tales. J Chemometrics, 2009, 23(7-8): 393-405.
  • 7Drexler F. Eine Methode zur Berechnung somtlicher Losungen yon Polynomgleichungs- systemen. Numer Math, 1977, 29(1): 45- 58.
  • 8Garcia C, Zangwill W. Finding all solutions to polynomial systems and other systems of equations. Math Program, 1979, 16(1): 159-176.
  • 9Haveliwala T. Topic-sensitive PageRank. In: Proceedings of the 11th International World Wide Web Conference, 2002.
  • 10Hu S, Qi L. Convergence of a second order Markov chain. http://arxiv.org/abs/1307.6919.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部