期刊文献+

On Iteration Complexity of a First-Order Primal-Dual Method for Nonlinear Convex Cone Programming 被引量:1

原文传递
导出
摘要 Nonlinear convex cone programming(NCCP)models have found many practical applications.In this paper,we introduce a flexible first-order primal-dual algorithm,called the variant auxiliary problem principle(VAPP),for solving NCCP problems when the objective function and constraints are convex but may be nonsmooth.At each iteration,VAPP generates a nonlinear approximation of the primal augmented Lagrangian model.The approximation incorporates both linearization and a distance-like proximal term,and then the iterations of VAPP are shown to possess a decomposition property for NCCP.Motivated by recent applications in big data analytics,there has been a growing interest in the convergence rate analysis of algorithms with parallel computing capabilities for large scale optimization problems.We establish O(1/t)convergence rate towards primal optimality,feasibility and dual optimality.By adaptively setting parameters at different iterations,we show an O(1/t2)rate for the strongly convex case.Finally,we discuss some issues in the implementation of VAPP.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2022年第1期53-87,共35页 中国运筹学会会刊(英文)
基金 This research was supported by the National Natural Science Foundation of China(Nos.71471112 and 71871140).
  • 相关文献

参考文献1

共引文献6

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部