摘要
针对水下图像存在雾气分布不均、光照不均等问题,提出了全局特征双注意力融合对抗网络的水下图像增强算法。首先,利用卷积层不断对输入图像进行下采样,代替平均池化来提取输入图像的全局特征;其次,通过构建全局特征双注意力融合模块,以适应多变的水体环境,更有效地增强不同分布程度的水下图像;最后,在训练中加入条件信息作为限制,提升网络的稳定性。实验结果表明,所提算法与其他经典及最新算法相比具有优势,表明其具有良好的图像增强效果。
Aiming at the problems of heterogeneous fog distribution and uneven illumination of underwater imagesan image enhancement method is proposed based on global feature dual attention fusion generative adversarial network.Firstlythe convolutional layers are used instead of average pooling layers to continuously down-sample the input images and extract the global features.Secondlythe global feature dual attention fusion block is constructedwhich is adaptive to the changing water environment and can enhance underwater information with various dissemination degrees more significantly.Finallyconditional information is incorporated as a restriction in training to increase the network's stability.The results of experiments demonstrate that the proposed algorithm outperforms the classic and latest algorithms and has fine functionality.
作者
刘旭
林森
陶志勇
LIU Xu;LIN Sen;TAO Zhiyong(School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125000,China;School of Automation and Electrical Engineering,Shenyang Ligong University,Shenyang 110000,China)
出处
《电光与控制》
CSCD
北大核心
2022年第7期43-48,共6页
Electronics Optics & Control
基金
国家重点研发计划项目(2018YFB1403303)。
关键词
水下图像增强
条件生成对抗网络
全局特征提取
注意力机制
underwater image enhancement
conditional generative adversarial network
global feature extraction
attention mechanism