摘要
合成孔径雷达(SAR)图像自动目标识别(ATR)技术是人工图像解译的关键技术之一,其旨在屏蔽固有噪声影响,获取感兴趣区域内表征目标的潜在特征信息,为目标识别提供有力的数据支撑。为了提升高分辨SAR图像目标识别精度,围绕算法设计中的相干斑抑制和特征提取问题,结合传统恒虚警率(CFAR)检测算法和深度卷积神经网络(DCNN)的最新研究,设计了SAR图像自动目标识别框架。实验基于MSTAR标准数据集,目标识别结果表明所构建模型的有效性。
Synthetic Aperture Radar(SAR)image Automatic Target Recognition(ATR)technology is one of the key technologies of artificial image interpretationwhich aims to isolate the influence of inherent noiseobtain the potential characteristic information of the target in the region of interestand provide strong data support for target recognition.In order to improve the accuracy of target recognition in high-resolution SAR imagesfocusing on the problems of speckle suppression and feature extraction in algorithm designan automatic target recognition framework for SAR images is designed by combining the traditional Constant False Alarm Rate(CFAR)detection algorithm and the latest research of the Deep Convolutional Neural Network(DCNN).The experiment is based on MSTAR standard data setand the results of target recognition show the effectiveness of the model.
作者
张官荣
赵玉
陈相
李波
王建军
刘丹
ZHANG Guanrong;ZHAO Yu;CHEN Xiang;LI Bo;WANG Jianjun;LIU Dan(Aeronautics Engineering College,Air Force Engineering University,Xi'an 710000,China;School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710000,China;No.93046 Unit of PLA,Shenyang 110000,China)
出处
《电光与控制》
CSCD
北大核心
2022年第7期119-125,共7页
Electronics Optics & Control
关键词
SAR图像目标识别
相干斑抑制
特征学习
卷积自编码网络
卷积神经网络
target recognition of SAR image
speckle suppression
feature learning
convolution auto-encoder network
convolutional neural network