期刊文献+

The cosemisimplicity and cobraided structures of monoidal comonads

原文传递
导出
摘要 In this paper,we study the category of corepresentations of a monoidal comonad.We show that it is a semisimple category if and only if the monoidal comonad is a cosemisipmle(coseparable)comonad,and it is a braided category if and only if the monoidal comonad admit a cobraided structure.At last,as an application,the braided structure and the semisimplicity of the Hom-comodule category of a monoidal Hom-bialgebra are discussed.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第3期485-499,共15页 中国高等学校学术文摘·数学(英文)
基金 the National Natural Science Foundation of China(Nos.11626138,11626139) the Natural Science Foundation of Shandong Province(No.ZR2016AQ03).
  • 相关文献

参考文献2

二级参考文献17

  • 1Brzezinski T., Majid S., Coalgebra bundles, Comm. Math. Phys., 1998, 191(2): 467-492.
  • 2Caenepeel S., Militaru G., Zhu S. L., Probenius and separable functors for generalized module categories and nonlinear equations, Vol.1787, Berlin, New York: Springer, 2002.
  • 3Beck J., Distributive laws, Lect. Notes Math., 1969,80:119-140.
  • 4Mesablishvili B., Entwining structures in monoidal categories, Journal of Algebra, 2008, 319(6): 2496-2517.
  • 5Bruguieres A., Virelizier A., Hopf monads, Adv. Math., 2007, 215(2): 679-733.
  • 6GSmez-Torrecillas J., Comonad and Galois corings, Applied Categorical Structures, 2006, 14(5/6): 579-598.
  • 7Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras σ-derivations. J Algebra, 2006, 295: 314-361.
  • 8Silvestrov S. Paradigm of quasi-Lie and quasi-Hom-Lie algebras and quasi-deformations. In: New Technique in Hopf Algebras and Graded Ring Theory, K Vllam Acad Belgie Wet. Brussels: Kunsten (KVAB), 2007: 165-177.
  • 9Yau D. The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. ArXiv: 0905.1980, 2010.
  • 10Chen Y Y, Wang Y, Zhang L Y. The construction of Hom-Lie bialgebras. J Lie Theory, 2010, 20: 767-783.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部