摘要
本文研究了一类三维分段光滑系统的穿越极限环.由于相空间被一个超平面分成两个区域,因而系统呈现两个不同的向量场.此外,系统还具有two-fold点,且在该点处两个向量场都与该超平面相切.本文证明系统穿越极限环的最大个数是2,给出了存在一个和两个穿越极限环的充要条件,并确定其周期及在切换流形上的穿越位置.
In this paper we investigate the crossing limit cycles of a 3 D discontinuous piecewise-smooth system. In this system, the phase space is divided into two regions by a hypersurface and thus the system presents two different vector fields.Meanwhile, the system presents two-fold in which both vector fields are tangent to the hypersurface. We prove that the maximum number of crossing limit cycles is 2 and give necessary and sufficient conditions for one and two crossing limit cycles respectively. Furthermore, the crossing locations of the crossing limit cycles are determined as well as their periods.
作者
郑莹莹
陈兴武
ZHENG Ying-Ying;CHEN Xing-Wu(School of Mathematics,Sichuan University,Chengdu 610064,China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期23-30,共8页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11871355)。