期刊文献+

基于贝叶斯网络的电力市场评估研究

Electricity Market Evaluation Research based on Bayesian Network
原文传递
导出
摘要 随着电力市场改革的不断推进,如何判断市场运行效率、分析市场状态是保障电力市场有效运行的重要内容之一。本文按照产业经济学中的结构—行为—绩效(SCP)范式,根据浙江电力市场的特点,建立电力市场评估指标体系。然后,构建基于贝叶斯网络的浙江电力市场评估模型,利用该模型对电力市场运行效率进行实时评估,得到关于市场结构、市场行为、市场绩效以及市场整体的3级警报级别,从而有效提高监管效率。最后,基于实验经济学,以电力市场仿真实验数据作为算例,验证得出:基于贝叶斯网络的浙江电力现货市场评估模型可以有效识别出市场中结构、行为、绩效三个环节的情况。 With the continuous advancement of the reform of the power market, how to judge the efficiency of the market and analyze the state of the market are one of the important contents to ensure the effective operation of the power market.In accordance with the structure-behavior-performance(SCP) paradigm in industrial economics, according to the characteristics of Zhejiang’s power market, the power market evaluation index system is established. Then, build the Zhejiang Electric Power Market evaluation model based on the Bayesian network, and use this model to evaluate the operation efficiency of the electricity market in real time, and the three-level alarm about the market structure, market behavior, market performance and the whole market is obtained, so as to effectively improve the efficiency of supervision.Finally, based on experimental economics, the electricity market simulation experimental data is used as an example, and it is verified that the Zhejiang Power spot market evaluation model based on Bayesian network can effectively identify the three links of the market, behavior, and performance in the market.
出处 《价格理论与实践》 北大核心 2021年第12期172-176,共5页 Price:Theory & Practice
关键词 电力市场 市场评估 贝叶斯网络 浙江电力市场 power market market evaluation Bayesian network Zhejiang Electric Power Market
  • 相关文献

参考文献6

二级参考文献54

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2刘敦楠,陈雪青,何光宇,周双喜.电力市场评价指标体系的原理和构建方法[J].电力系统自动化,2005,29(23):2-7. 被引量:58
  • 3(美)平狄克(RobertS.Pindyck),(美)鲁宾费尔德(DanielL.Rubinfeld)著,张军[等].微观经济学[M]中国人民大学出版社,2000.
  • 4Tamada Y,Imoto S,Araki H. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers[J].IEEE Trans on Computational Biology and Bioinformatics,2011,(8):683-697.
  • 5Ibrahim W,Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates[J].{H}IEEE Transactions on Reliability,2011,(3):538-550.
  • 6Lee S H,Suh H. Bayesian network-based behavior control for skilli gent robots[A].2008.2910-2917.
  • 7Infantes G,Ghallab M,Ingrand F. Learning the behavior model of a robot[J].Autonomous Robot,2011,(2):157-177.
  • 8Isozaki T. Minimum free energies with "data temperature" for parameter learning of Bayesian networks[A].2008.371-378.
  • 9Isozaki T. Learning causal Bayesian network using minimum free energy principle[J].{H}NEW GENERATION COMPUTING,2012,(1):17-52.
  • 10Niculescu R S. Exploiting parameter domain knowledge for learning in Bayesian networks[D].Pittsburgh:Carnegie Mellon University,2005.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部