期刊文献+

集成化高速APD的研究进展 被引量:2

Research Progresses of Integrated High-speed APD
下载PDF
导出
摘要 理论分析了降低雪崩光电二极管(APD)噪声、提高其增益及带宽的一般方法。面向APD综合响应度与带宽之间存在的固有矛盾问题,提出了采用三维纳米化技术降低APD的噪声,以及采用集成光学技术提高APD的响应度的解决方案。在此基础上,从表面等离基元聚光结构与垂直光入射型APD的混合集成、超透镜与垂直光入射型APD的混合集成,以及阵列波导光栅(AWG)与光侧入射倏逝波耦合波导(EC)APD的单片集成等三个方面,综述了集成化高速APD的研究进展,对该领域的发展趋势进行了展望。 The general methods for reducing the noise of avalanche photodiode(APD)and improving its gain and bandwidth were analyzed.Aiming at the inherent contradict ion between the responsivity and bandwidth,the solutions were proposed in this paper,such as using three-dimensional nano-technology to reduce the noise of APD and using integrated optical technology to improve the responsivity.The research progresses of integrated high-speed APD were summarized,including the following three aspects:hybrid integration of surface plasmon focusing structure with APD of vertical light incidence,hybrid integration of super lens with APD of vertical light incidence,and monolithic integration of arrayed waveguide grating(AWG)and evanescent wave coupling waveguide APD of side optical incident.The development trends were prospected as well.
作者 赵彦立 李倩 张和伟 丁文强 余旭镇 冯旭阳 林泽标 田扬 曾轩 ZHAO Yanli;LI Qian;ZHANG Hewei;DING Wenqiang;YU Xuzhen;FENG Xuyang;LIN Zebiao;TIAN Yang;ZENG Xuan(Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430074,CHN)
出处 《半导体光电》 CAS 北大核心 2022年第2期285-293,共9页 Semiconductor Optoelectronics
基金 国家重点研发计划项目(2018YFB2200204)。
关键词 InP集成光子学 光通信 光电探测器 雪崩光电二极管 InP integrated photonics optical communication photodetedtor APD
  • 相关文献

参考文献3

二级参考文献18

  • 1吴春红,张骏,彭晓钰,钱惟贤(指导).采用波形积分法提升APD探测系统检测范围[J].红外与激光工程,2020(S01):110-116. 被引量:2
  • 2Bottacchi S, Beling A, Matiss A, Nielsen M L, Steffan A G, Unterb?rsch G and Umbach A 2010 IEEE J. Select. Topics Quantum Electron. 16 1099.
  • 3Coldren L A, Nicholes S C, Johansson L, Ristic S, Guzzon R S, Norberg E J and Krishnamachari U 2011 J. Lightw. Technol. 29 554.
  • 4Pan P, An J M, Wang H J, Wang Y, Zhang J S, Wang L L, Dai H Q, Zhang X G, Wu Y D and Hu X W 2014 Chin. Phys. B 23 044210.
  • 5Yoshikuni Y 2002 IEEE J. Select. Topics Quantum Electron. 8 1102.
  • 6Nagarajan R, Joyner C H, Schneider R P, et al. 2005 IEEE J. Select. Topics Quantum Electron. 11 50.
  • 7Beling A and Campbell J C 2009 J. Lightw. Technol. 27 343.
  • 8Zhang Y, Zuo Y H, Guo J C, Ding W C, Cheng B W, Yu J Z and Wang Q M 2009 Chin. Phys. B 18 225.
  • 9Bach H G, Beling A, Mekonnen G G, Kunkel R, Schmidt D, Ebert W, Seeger A, Stollberg M and Schlaak W 2004 IEEE J. Select. Topics Quantum Electron. 10 668.
  • 10Park J W 2010 IEEE Photon. Technol. Lett. 22 975.

共引文献4

同被引文献65

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部