期刊文献+

一种多方量子签名协议的安全性分析与改进

Security analysis and improvement of a multiparty quantum signature scheme
下载PDF
导出
摘要 多方量子签名协议可以满足两人或多人共同为同一消息进行签名,保证协议在量子计算攻击下的安全性。最近,Vandani等提出了一种新型量子签名协议,该协议需要用户和认证机构共同生成最终签名,且不需要纠缠资源。然而,通过分析发现,协议的正确性和安全性存在问题,具体地,签名操作设计的不对易性会导致签名验证出现错误,且签名协议无法抵御验证者的伪造攻击。针对上述问题,本文利用增加对易操作、引入可信任第三方Trent等方法,给出了改进后的协议。分析表明,新协议既保证了多方签名协议的功能性需求,同时也可以抵抗原协议存在的验证者伪造攻击。 Multiparty quantum signature protocol can satisfy two or multi-user signature together and can resist quantum attacks and ensure the security of the scheme under quantum computing attack.Recently,Vandani et al.proposed a new quantum signature scheme,which needs the user and the certification authority to jointly generate the final signature and no entangled resources are required.However,the analysis shows that there are problems in the correctness and security of the scheme.Concretely,non-commutative of the signature operators design can lead to errors in signature verification,and the signature scheme cannot resist the forgery attack of the verifier.In view of the above problems,this paper gives an improved scheme by using the commutative operation and adding a trusted third-party Trent.The new scheme not only ensures the functional requirements of the multiparty quantum signature scheme,but also resists the forgery attack of the verifier.
作者 韩国基 张龙 HAN Guoji;ZHANG Long(School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China;Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems,Heilongjiang University,Harbin 150080,China;Institute for Cryptology&Network Security,Heilongjiang University,Harbin 150080,China)
出处 《黑龙江大学自然科学学报》 CAS 2022年第3期253-260,共8页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省自然科学基金资助项目(LH2019F031)。
关键词 量子签名 多方签名 量子密码 不可伪造性 对易操作 quantum signature multiparty signature quantum cryptography unforgeability commutative operators
  • 相关文献

参考文献1

二级参考文献24

  • 1G.H. Zeng and K. Christoph, Phys. Rev. A 65 (2002) 042312.
  • 2M. Curty and N. Lutkenhaus, Phys. Rev. A 77 (2008) 046301.
  • 3G.H. Zeng, Phys. Rev. A 78 (2008) 016301.
  • 4G.H. Zeng, M.H. Lee, Y. Guo, and G.Q. He, Int. J. Quant. Inform. 5 (2007) 553.
  • 5Q. Li, W.H. Chan, and D.Y. Long, Phys. Rev. A 79 (2009) 054307".
  • 6X. Lu and D.G. Feng, CIS Lecture Notes in Computer Science 3314 (2004) 1054.
  • 7X. Lu and D.G. Feng, 2004 available at http://arxiv. org/abs/quant-ph/0403046.
  • 8J. Wang, Q. Zhang, and C.J. Tang, 2005 available at http://arxiv, org/abs/quant-ph/0511224v1.
  • 9Z.J. Cao and O. Markowitch, Int. J. Quan. Inform. 7 (2009) 1205.
  • 10H.K. Lo and H.F. Chau, Science 283 (1999) 2050.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部