期刊文献+

基于灰色关联度样本优化的高速列车轴箱轴承温度预测方法 被引量:1

Temperature Prediction Method of Axle Box Bearing of High-speed Train Based on Grey Correlation Degree Sample Optimization
下载PDF
导出
摘要 建立了一种基于多基函数组合的最小二乘回归的轴温预测模型,并用灰色关联的方法对样本进行优化选择。采用灰色关联分析对轴温相关因素进行选择,并根据轴温与环温的温差分为高温差与低温差2个阶段,建立了一种多基函数组合的最小二乘预测模型,通过不断地对上一阶段模型的预测偏差加权校正,减小了模型的输出偏差。基于某型高速列车的履历轴箱轴承温度数据,运用文中所采用的模型对某一区间车辆从温升到开始制动这一阶段的温度进行预测,通过预测评价值对模型进行验证,证明了模型的有效性,基于多基函数组合的预测模型的最大绝对误差为0.65,最大相对误差为1.64%,绝对平均误差为0.35,相对平均误差为0.99%,其预测精度较单一基函数的预测精度改善。 In this paper,an axle temperature prediction model based on the combination of multi-basis functions and the least square regression is established,and the samples are optimized by grey correlation method.The related factors of shaft temperature are selected by grey correlation analysis,and according to the temperature difference between shaft temperature and ring temperature,it is divided into two stages:high temperature difference and low temperature difference,and a least square prediction model based on the combination of multi-basis functions is established.through the continuous weighted correction of the prediction deviation of the previous stage model,the output deviation of the model is reduced.Based on the temperature data of the axle box bearing of a certain type of high-speed train,the temperature of the vehicle in a certain section from the temperature rise to the beginning of braking is predicted by the model used in this paper,and the model is verified by the prediction and evaluation value.The validity of the model is proved.The maximum absolute error,the maximum relative error and the absolute average error of the prediction model based on the combination of multi-basis functions are 0.65,1.64%and 0.35,respectively.The relative average error is 0.99%,and its prediction accuracy is better than that of a single basis function.
作者 潘彦龙 胥如迅 PAN Yanlong;XU Ruxun(Mechatronics T&R Institute,Lanzhou Jiaotong University,Lanzhou 730070 Gansu,China;Gansu Provincial Engineering Technology Center for Informatization of Logistics&Transport Equipment,Lanzhou 730070 Gansu,China;Gansu Provincial Industry Technology Center of Logistics&Transport Equipment,Lanzhou 730070 Gansu,China)
出处 《铁道机车车辆》 北大核心 2022年第3期66-71,共6页 Railway Locomotive & Car
关键词 灰色关联度 样本优化 高速列车 轴箱轴承 温度预测 grey correlation degree sample optimization High-speed train axle box bearing temperature prediction
  • 相关文献

参考文献8

二级参考文献73

  • 1杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. 被引量:85
  • 2梁平,范立莉,龙新峰.非线性模型在汽轮发电机组振动故障预测中的应用[J].华南理工大学学报(自然科学版),2006,34(6):122-126. 被引量:8
  • 3全燕鸣,何振威.车削碳钢中切削热的分配[J].中国机械工程,2006,17(20):2155-2158. 被引量:12
  • 4Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 5Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 7Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 8Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 9Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 10Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.

共引文献185

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部