期刊文献+

算子及其函数的(UW_(π))性质与(ω)性质

The property (UW_(π)) and property (ω) for operators and their functions
下载PDF
导出
摘要 设H为无限维复可分的Hilbert空间,B(H)为H上的有界线性算子的全体.T∈B(H)称为满足(UW_(π))性质,若σ_(a)(T)\σ_(ea)(T)=P_(D)(T),其中P_(D)(T)=σ(T)\σ_(D)(T)={λ∈σ(T):T-λI是Drazin可逆算子},σ(T)={λ∈C:T-λI不是可逆算子};若σ_(a)(T)\σ_(ea)(T)=π_(00)(T),称T满足(ω)性质,其中σ_(a)(T)和σ_(ea)(T)分别表示算子T的逼近点谱和本质逼近点谱,π_(00)(T)={λ∈isoσ(T):0<dim N(T-λI)<∞}.该文首先给出了有界线性算子同时满足(UW_(π))性质以及(ω)性质的充要条件;之后研究了算子函数同时满足(UW_(π))性质以及(ω)性质的判定方法. Let H be an infinite dimensional complex separable Hilbert space and B(H)be the algebra of all bounded linear operators on H.T∈B(H)is said to satisfy property(UW_(π))ifσ_(a)(T)\σ_(ea)(T)=P_(D)(T),where P_(D)(T)=σ(T)\σ_(D)(T)={λ∈σ(T):T-λI is Drazin invertible operator}.Ifσ_(a)(T)\σ_(ea)(T)=π_(00)(T),T is said to satisfy property(ω),where σ_(a)(T)and σ_(ea)(T)denote the approximate point spectrum and essential approximate point spectrum of T respectively,and π_(00)(T)={λ∈isoσ(T):0<dim N(T-λI)<∞}.Firstly,the necessary and sufficient conditions for which the property(UWπ)and the property(ω)hold for bounded linear operators are given.Then,the judgements for operator functions satisfying the property(UW_(π))and the property(ω)are studied.
作者 车雨红 戴磊 郭志华 CHE Yuhong;DAI Lei;GUO Zhihua(School of Mathematics and Statistics,Weinan Normal University,714099,Weinan;School of Mathematics and Statistics,Shaanxi Normal University,710119,Xian,Shaanxi,PRC)
出处 《曲阜师范大学学报(自然科学版)》 CAS 2022年第3期114-120,共7页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(11501419) 陕西省自然科学基金(2021JM-519) 渭南师范学院2021人才项目(2021RC16).
关键词 (UW_(π))性质 (ω)性质 property(UW_(π)) property(ω) spectrum
  • 相关文献

参考文献1

二级参考文献16

  • 1Aiena, P., Pefa, P.: Variation on Weyl theorem. J. Math. Anal. Appl., 324, 566-579 (2006).
  • 2Aiena, P.: Property (w) and perturbation II. J. Math. Anal. Appl., 342, 830-837 (2008).
  • 3Aiena, P., Biondi, M. T.: Property (w) and perturbations. J. Math. Anal. Appl., 336, 683 692 (2007) Aiena,.
  • 4P. Biondi, M. T., Villafafie, F.: Property (w) and perturbations III. J. Math. Anal. Appl., 353, 205-214 (2009).
  • 5Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Pub- lishers, Dordrecht, 2004.
  • 6Cao, X. H., Guo, M. Z., Meng, B.: Weyl spectra and Weyl's theorem. J. Math. Anal. Appl., 288, 758 767 (2003).
  • 7Harte, R., Lee, W. Y.: Another note on Weyl's theorem. Trans. Amer. Math. Soc., 349, 2115-2124 (1997).
  • 8Herrero, D. A., Taylor, T. J., Wang, Z. Y.: Variation of the point spectrum under compact perturbations. Oper. Theory Adv. AppL, 32, 113-158 (1988).
  • 9Herrero, D. A.: Economical compact perturbations, II, Filling in the holes. J. Operator Theory, 19, 25-42 (1988).
  • 10Herrero, D. A.: Approximation of Hilbert Space Operators, Longman Scientific and Technical, Harlow, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部