期刊文献+

Gradient and Hessian of Joint Probability Function with Applications on Chance-Constrained Programs

原文传递
导出
摘要 Joint probability function refers to the probability function that requires multiple conditions to satisfy simultaneously.It appears naturally in chanceconstrained programs.In this paper,we derive closed-form expressions of the gradient and Hessian of joint probability functions and develop Monte Carlo estimators of them.We then design a Monte Carlo algorithm,based on these estimators,to solve chance-constrained programs.Our numerical study shows that the algorithm works well,especially only with the gradient estimators.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2017年第4期431-455,共25页 中国运筹学会会刊(英文)
基金 the Hong Kong Research Grants Council(No.GRF 613213)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部