期刊文献+

基于双支路特征融合的MRI颅脑肿瘤图像分割研究 被引量:2

Research on MRI brain tumor image segmentation based on dual-branch feature fusion
原文传递
导出
摘要 针对磁共振成像(magnetic resonance imaging, MRI)颅脑肿瘤区域误识别与分割网络空间信息丢失问题,提出一种基于双支路特征融合的MRI脑肿瘤图像分割方法。首先通过主支路的重构VGG与注意力模型(re-parameterization visual geometry group and attention model, RVAM)提取网络的上下文信息,然后使用可变形卷积与金字塔池化模型(deformable convolution and pyramid pooling model, DCPM)在副支路获取丰富的空间信息,之后使用特征融合模块对两支路的特征信息进行融合。最后引入注意力模型,在上采样过程中加强分割目标在解码时的权重。提出的方法在Kaggle_3m数据集和BraTS2019数据集上进行了实验验证,实验结果表明该方法具有良好的脑肿瘤分割性能,其中在Kaggle_3m上,Dice相似系数、杰卡德系数分别达到了91.45%和85.19%。 To address the problem of MRI brain tumor region misidentification and spatial information loss of segmentation network, an MRI brain tumor image segmentation method based on dual-branch feature fusion is proposed.First, the contextual information of the network is extracted by structurally the re-parameterization visual geometry group and attention model(RVAM) in the primary branch, and then the rich spatial information is obtained in the secondary branch using deformable convolution and pyramid pooling model(DCPM),after which the feature fusion module is used to fuse the feature information of the two branches.Finally, the attention model is introduced to strengthen the weight of segmented targets in the up-sampling process at decoding.The proposed method has been experimentally validated on the Kaggle_3 m and BraTS2019 datasets, and the experimental results show that our method has good brain tumor segmentation performance, where the Dice similarity coefficient and Jaccard coefficient reach 91.45% and 85.19% on Kaggle_3 m, respectively.
作者 熊炜 周蕾 乐玲 张开 李利荣 XIONG Wei;ZHOU Lei;YUE Ling;ZHANG Kai;LI Lirong(School of Electrical Electronic Engineering,Hubei University of Technology,Wuhan,Hubei 430068,China;Department of Computer Science Engineering,University of South Carolina,Columbia,SC 29201,USA)
出处 《光电子.激光》 CAS CSCD 北大核心 2022年第4期383-392,共10页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61571182,61601177) 国家留学基金(201808420418) 湖北省自然科学基金(2019CFB530) 湖北省科技厅重大专项(2019ZYYD020)资助项目。
关键词 磁共振成像(magnetic resonance imaging MRI)颅脑肿瘤图像分割 双支路特征融合 重构VGG与注意力模型(re-parameterization visual geometry group and attention model RVAM) 可变形卷积与金字塔池化模型(deformable convolution and pyramid pooling model DCPM) magnetic resonance imaging(MRI)brain tumor image segmentation dual-branch feature fusion re-parameterization VGG and attention model(RVAM) deformable convolution and pyramid pooling model(DCPM)
  • 相关文献

参考文献2

二级参考文献7

共引文献101

同被引文献29

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部