期刊文献+

基于自适应高斯混合模型的铁轨异物入侵检测研究 被引量:2

Research on detection of foreign object intrusion in railroad tracks based on AGMM
原文传递
导出
摘要 针对复杂铁路环境下异物入侵动态检测抗扰能力弱和快速性差等问题,本文提出了一种基于自适应高斯混合模型(adaptive Gaussian mixture model, AGMM)的铁轨异物入侵检测方法。通过分析铁路场景发生复合抖动时存在随机性的特点,首先对输入的铁路视频进行抖动检测,然后引入仿射变换与中值滤波,对视频序列中存在抖动的图像进行处理。再采用逐帧迭代填充的方法,对去抖后图像出现的黑边进行填充,得到无抖动和无黑边的铁路视频帧。最后,在现有高斯混合模型的基础上,设计了自适应选择高斯分布个数和学习率,利用改进后的高斯混合模型实现复杂铁路视频的背景建模,并由此提高前景目标的检测速度。实验结果表明,本文方法在铁路视频存在抖动的情形下,轨道异物入侵目标检测的精度是原有的2.6倍,检测速度是2.8倍,能提高目标检测的抗干扰性和快速性。 Aiming at the problems of weak anti-interference ability and poor speed of dynamic foreign object detection in complex railway environment, a rail foreign object intrusion detection method based on an adaptive Gaussian mixture model(AGMM) is put forward in this paper.By analyzing the characteristics of randomness when compound jitter occurs in railway scenes, Firstly, jitter detection on the input railway video is performed, and then affine transformation and median filtering are introduced to process the jittery images in the video sequence.Secondly, the method of iterative filling frame by frame is used to fill the black edges of the image after debounce to obtain a railway video frame without jitter and without black edges.Finally, on the basis of the existing Gaussian mixture model, an adaptive selection of the number of Gaussian distributions and learning rate is designed, and the improved Gaussian mixture model is used to realize the background modeling of complex railway videos, and thereby improve the detection speed of foreground objects.The experimental results show that in the case of jitter in the railway video, the accuracy rate of the track foreign body intrusion target detection is 2.6 times, and the detection speed is 2.8 times that of the original algorithm, which can improve the anti-interference and rapidity of target detection.
作者 侯涛 宝才文 陈燕楠 HOU Tao;BAO Caiwen;CHEN Yannan(School of Automation&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou,Ganshu 730070,China)
出处 《光电子.激光》 CAS CSCD 北大核心 2022年第4期403-413,共11页 Journal of Optoelectronics·Laser
基金 兰州交通大学“百名青年优秀人才培养计划”和甘肃省高等学校科研项目(2017A-026)资助项目。
关键词 异物检测 图像去抖 仿射变换 中值滤波 高斯混合模型 foreign object detection image debounce affine transformation median filter Gaussian mixture model
  • 相关文献

参考文献13

二级参考文献117

  • 1武治国,王明佳,丁南南.基于视觉分析的机场跑道异物检测技术研究[J].仪器仪表学报,2015,36(S01):62-67. 被引量:2
  • 2方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 3崔政,李壮.两种改进的模板匹配识别算法[J].计算机工程与设计,2006,27(6):1083-1085. 被引量:26
  • 4陈忠碧,张启衡,彭先蓉,任臣.基于块估计的运动目标检测方法[J].光电工程,2006,33(6):15-19. 被引量:11
  • 5杨广林,孔令富.基于图像分块的背景模型构建方法[J].机器人,2007,29(1):29-34. 被引量:12
  • 6Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 7Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 8Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 9Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 10Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832

共引文献301

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部