期刊文献+

Simulations of Tapered Channel in Multilayer Graphene as Reverse Osmosis Membrane for Desalination

下载PDF
导出
摘要 Pressure-driven reverse osmosis membrane has important application in seawater desalination.Inspired by the structure of aquaporin,we established and studied the mechanism of the structure of multilayer graphene with tapered channels as reverse osmosis.The water flux of multilayer graphene with tapered channels was about 20%higher than that of parallel graphene channel.The flow resistance model was established,and the relationship between flow resistance and opening angles was clarified.The relationship between flow resistance and outlet size was also described.By means of molecular dynamics simulation,slip coefficients of multilayer graphene with tapered channel were obtained and verified by the contact angle of water.Results show that the permeability of graphene with tapered channel is about three orders of magnitude higher than that of commercial reverse osmosis membrane and the desalination rate is 100%.Temperature difference between the two sides of the tapered channel will promote the water flux positively.
作者 王天振 CHEN Bo SHAO Xingyu ZHENG Huai 胡雪蛟 江海峰 WANG Tianzhen;CHEN Bo;SHAO Xingyu;ZHENG Huai;HU Xuejiao;JIANG Haifeng(Key Laboratory of Hydraulic Machinery Transients(Wuhan University),Ministry of Education,School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,China;Research Institute of Tsinghua University in Shenzhen,Shenzhen 518071,China)
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期314-323,共10页 武汉理工大学学报(材料科学英文版)
基金 the National Natural Science Foundation of China(No.51706157) Applied Basic Research Foundation of Guangdong Hong Kong-Macao Greater Bay Area(No.2020B1515120011)。
  • 相关文献

参考文献6

二级参考文献24

  • 1GUO YongBo,LIANG YingChun,CHEN MingJun,BAI QingShun&LU LiHua Precision Research Engineering Institute,Harbin Institute of Technology,Harbin 150001,China.Molecular dynamics simulations of thermal effects in nanometric cutting process[J].Science China(Technological Sciences),2010,53(3):870-874. 被引量:7
  • 2曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象[J].物理学报,2006,55(10):5305-5310. 被引量:47
  • 3Ajayan PM. Nanotubes from Carbon[J].Chem. Rev., 1999,99: 1787.
  • 4Hongjie Dai. Carbon Nanotubes: Synthesis, Integration, and Properties[J]. Acc. Chem. Res., 2002, 35: I 035.
  • 5Monthioux M, Serp P, Flabaut E, Laurent C, Peigney A, Razafini?manana M, Bacsa W, Broto J -M, Bhushan B. Handbook of Nanolechnology[M]. Springer, Berlin., 2004: 39.
  • 6Philippe R, Morancais A, Corrias M, et 01. Catalytic Production of Carbon Nanotubes by Fluidized-Bed CVD[J]. Chem. Vap. Deposition., 2007,13:447.
  • 7Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354: 56.
  • 8Yanjiao Li, Jing'en Zhou, Simon Tung, et 01. A Review on Development ofNanoftuid Preparation and Characteristic[J]. Powder Technol., 2009, 196: 89.
  • 9Wu Bohua, Kuang Yinjie, Zhang Xiaohua, et 01. Noble Metal Nanoparticles/Carbon Nanotubes Nanohybrids: Syntbesis and Applications[J]. Nano Today, 2011,6: 75.
  • 10Peng Zheng, Feng Chunfang, Luo Yongyue, et 01. Structure and Properties of Self-Assembled Narural RubberlMulti-Walled Carbon Nanotube Composites[J]. J Wuhan Univ. Technol. - Mater. Sci. Ed., 20 II, 26: 807.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部