期刊文献+

飞秒激光制备仿生疏水微柱阵列应用于液滴操控 被引量:1

Fabrication of bionic hydrophobic micropillar arrays by femtosecond lasers for droplet manipulation
原文传递
导出
摘要 仿生功能表面的制备是目前研究的热点,尤其是仿生疏水表面的制备.常用的制备方法包括等离子刻蚀、光刻等,制备过程较为复杂.本文基于飞秒激光微纳加工和模板转印技术,提出了一种制备疏水微柱阵列的简单策略,系统地研究了结构参数、表面化学修饰和润湿性之间的关系.研究发现,直径、间距和高度等结构参数对微柱阵列表面的润湿性影响较大.当微柱间距由400μm增加到600μm时,液滴滑动角从31°增加至76°.当微柱直径从100μm增加到300μm时,液滴滑动角也会相应地从40°增加到80°.微柱阵列的表面黏附性随着结构参数(直径、间距、高度)的改变而发生变化.基于这种特性,我们设计了一种具有不同间距的微柱阵列,用来实现液滴滑动行为的控制,同时还可以实现液滴微反应等应用.这种制备方式不仅操作简便,而且适用性广,在微流体芯片、生物医学和化学微反应等领域具有潜在的应用价值. Nature is the source of inspiration for human design and manufacture.The preparation of biomimetic functional surfaces is a hot research topic,especially in the preparation of biomimetic hydrophobic surfaces.Common preparation methods include plasma etching,lithography,and so on.But those preparation methods are complex.In this article,a simple strategy for the preparation of hydrophobic micropillar arrays is proposed based on femtosecond laser micro-nano fabrication and replica-mold technology,and the relationship between structural parameters,surface chemical modification,and wettability is systematically investigated.It was found that structural parameters,such as spacing,diameter,and height,had a large effect on the wettability of the chemically modified micropillar arrays.When the spacing of the micropillars increases from 400 to 600μm,the droplet sliding angle increases from 31°to 76°.This is because as the spacing increases,the droplets gradually penetrate the gaps between the micropillars.As the droplet slides across the surface,it creates a larger energy potential barrier,so the larger the spacing,the greater the sliding angle,which means the greater adhesion force on the surface.Similarly,when the diameter increases from 100 to 300μm,the droplet sliding angle increases from40°to 80°accordingly.The contact area between the droplet and the micropillar array increases with increasing diameter,that is,the adhesion force between the droplet and the micropillar array increases gradually.Therefore,the sliding angle of the droplet is increased on a larger diameter micropillar array,i.e.,the adhesion force is relatively high.The height of the micropillar also affects wettability.When the height is below 100μm,the droplet will fall into the structure under the action of its gravity,and contact with the substrate,resulting in a larger adhesion force.Even when the sample is turned over 90°,the droplets do not slip off.When the height is greater than 200μm,there is an air layer between the droplet and the substrate,which becomes increasingly visible as the height increases.The sliding angle of the droplet on the micropillar array maintains at~50°and does not change significantly with increasing height.This is because the contact state between droplets and microcolumns will not be changed after the height increases to a certain extent(≥200μm).Furthermore,the prepared samples exhibit excellent fatigue resistance.After testing,the maximum tensile rate of the sample can reach400%,and the micropillar array can still recover to the original morphology.Based on the above experimental results,the surface adhesion force of the micropillar array can be controlled by adjusting the structural parameters,such as diameter and spacing.We designed a micropillar array with different spacings(400 and 600μm)to realize the control of droplet sliding behavior by using this property.In addition,the micropillar arrays with different spacings can be combined into specific patterns to realize the micro-reaction of droplets.This preparation method of biomimetic hydrophobic micropillar arrays is not only simple but also widely applicable.The prepared hydrophobic micropillar arrays have potential applications in microfluidic chips,biomedicine,and chemical micro-reactions.
作者 吴思竹 李大宇 黄玖辉 项乐 卢嘉伟 王悦 李建权 李传宗 Sizhu Wu;Dayu Li;Jiuhui Huang;Le Xiang;Jiawei Lu;Yue Wang;Jianquan Li;Chuanzong Li(School of Instrument Science and Opto-Electronics Engineering,Hefei University of Technology,Hefei 230009,China;Intelligent Interconnected Systems Laboratory of Anhui Province,Hefei University of Technology,Hefei 230009,China;Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,Hefei University of Technology,Hefei 230009,China)
出处 《科学通报》 EI CAS CSCD 北大核心 2022年第17期1958-1965,共8页 Chinese Science Bulletin
基金 国家自然科学基金(51875160,52177137) 中央高校基本科研业务费专项资金(PA2020GDKC0010)资助。
关键词 飞秒激光 微纳加工 微柱阵列 液滴操控 微反应 femtosecond laser micro-nano fabrication micropillar array droplet manipulation micro-reaction
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部