期刊文献+

旋转悬臂管道流固耦合振动分析 被引量:1

Dynamics Analysis of Rotating Cantilevered Pipe Conveying Fluid
下载PDF
导出
摘要 旋转悬臂输流直管,结合了输流管道和旋转梁的工作特点,在旋转装置中应用广泛,其振动现象对系统的稳定性和可靠性有着重要的影响。针对旋转悬臂输流直管,采用哈密顿方法推导了旋转悬臂输流直管的线性振动微分方程,应用小波有限单元法离散微分方程,构建了旋转悬臂输流直管面内和面外振动的小波单元矩阵。通过分析面内和面外振动的临界流速,表明转速能够增大临界流速曲线的稳定区域,对于质量比相同时,面外的临界流速大于面内的,且随着转速的增大,面内面外的临界流速差值增大。在流速不断增大时,面内振动先于面外发生失稳,对于含有充液管道的旋转机械设计有着参考价值。 Rotating cantilever pipe conveying fluid is widely used in rotating machines,which combines the characteristics of fluid-conveying pipe and rotating beam.The vibration has an important effect on the stability and reliability of the system.The linear vibration differential equation of the rotating cantilever pipe conveying fluid is derived by using Hamiltonian method.The wavelet finite element method is used to discrete the differential equation,and the wavelet element matrix of the in-plane and out of plane vibration of the rotating cantilever pipe is constructed.By analyzing the critical velocity of in-plane and out-of-plane vibration,it is shown that the rotational speed can increase the stable region of critical velocity curve,and for the same mass ratio,the out-of-plane critical velocity is greater than in-plane critical velocity.And with the increase of angular velocity,the difference between in-plane and out-of-plane critical velocity increases.When the flow velocity increases,the instability of in-plane motion becomes instability early,which is valuable for the design of rotating machines.
作者 曹建华 郭东旭 褚园 Cao Jianhua;Guo Dongxu;Chu Yuan(College of Mechanical and Electronic Engineering,Huangshan University,HuangShan 245021,China)
出处 《黄山学院学报》 2022年第3期6-10,共5页 Journal of Huangshan University
基金 安徽省高校优秀青年人才支持计划项目(gxyq2020053) 安徽省仿真设计与现代制造工程技术研究中心开放研究项目(SGCZXYB1802,SGCZXYB1807) 黄山学院人才引进科研启动项目(2020xkjq002)。
关键词 输流管道 旋转 直管 振动 fluid-conveying pipe rotating straight pipe vibration
  • 相关文献

参考文献2

二级参考文献14

  • 1何正嘉,陈雪峰.小波有限元理论研究与工程应用的进展[J].机械工程学报,2005,41(3):1-11. 被引量:26
  • 2王琳,倪樵.具有非线性运动约束输液曲管振动的分岔[J].振动与冲击,2006,25(1):67-69. 被引量:19
  • 3Quak Ewald, Weyrich Norman. Decomposition and Reconstruction algorithms for spline wavelets on a bounded interval [J]. Applied and Computational Harmonic Analysis, 1994, 1(3):217-231.
  • 4Canuto C, Tabacco A, Urban K. The wavelet element method Part Ⅱ:Realization and Additional Feature in 2D and 3D[J].Applied and Computational Harmonic Analysis, 2000,8:123-165.
  • 5Cohen A. Numerical Aalysis of Wavelet Mthod[M]. Elsevier Prss, Amsterdam, Holland, 2003.
  • 6Ma J X, Xue J J, Yang S J, et al. A study of the construction and application of a Daubechies wavelet-based beam element [J]. Finite Elements in Analysis and Design, 2003, 39:965-975.
  • 7Chen X F, Yang S J, Ma J X, et al. The construction of wavelet finite element and its application[J]. Finite Elements in Analysis and Design, 2004, 40: 541-554.
  • 8Chen W H, Wu C W. Spline wavelets element method for frame structures vibration [J]. Computational Mechanics,1995, 16(1):11-21.
  • 9Basu P K, Jorge A B, Badri S, et al. Higher-order modeling of continua by finite-element, boundary-element, Meshless,and wavelet methods[J]. Computers and Mathematics with Applications,2003,46:15-33.
  • 10Goswami J C, Chan A K, Chui C K. On solving first-kind integral equations using wavelets on a bounded interval[J].IEEE Transactions on Antennas and Propagation, 1995,43:614-622.

共引文献9

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部