期刊文献+

高斯骨架差分进化算法与回声状态网络的结合应用 被引量:1

Combined application of Gaussian skeletal differential evolution algorithm and echo state network
下载PDF
导出
摘要 针对回声状态网络(ESN)对于不同时间序列的学习上无法有效地确定储备池参数的问题,提出一种新型预测模型。利用改进的高斯骨架差分进化算法(DE)来优化回声状态网络。在DE算法中引入了变异策略选择因子,并将选择因子随个体共同参与进化,使每个个体执行当前最适合的变异策略。改善了原始DE算法进化过程中的盲目性,同时选择因子的动态自适应特性保持了骨架算法近似无参数的优点,最后为避免算法早熟加入停滞扰动策略改善算法的寻优性能。为验证模型的有效性,对Mackey-Glass时间序列、赣州月平均气温数据集进行仿真实验。由实验结果可知,该模型可以提高时间序列的预测精度,且具有良好的泛化能力及实际应用价值。 A new prediction model was proposed to address the problem that the Echo state networks(ESN)cannot identify reservoir parameters effectively when learning different time series,using modified Gaussian Skeleton Differential Evolution(DE)algorithm to optimize the ESN.The mutation strategy selection factor was introduced in it,and the selection factor was involved in the evolution with individuals,so each individual executed the best mutation strategy.The blindness in the evolution of the original DE algorithm was improved and the dynamic adaptive characteristics of the selection factor kept the advantage approximately parameter-free as the skeleton algorithm.Finally,to avoid the algorithm Premature,stagnation disturbance strategy was added to improve the optimization performance of the algorithm.To verify the effectiveness of the method,simulation experiments were carried out on the Mackey-Glass time series and the data sets of Ganzhou monthly average temperature.The experimental results showed that the model proposed in this paper can improve the prediction accuracy of time series with good generalization ability and practicality.
作者 谢霖铨 曾孟麒 杨火根 XIE Lingquan;ZENG Mengqi;YANG Huogen(School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2022年第3期363-370,378,共9页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(12161043)。
关键词 时间序列 高斯骨架 差分进化 回声状态网络 Time series Gaussian skeleton Differential evolution(DE) Echo state network(ESN)
  • 相关文献

参考文献6

二级参考文献43

  • 1叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. 被引量:104
  • 2李晓东,曾光明,黄国和,李建兵,蒋茹.城市污水量短时预测的混沌神经网络模型[J].环境科学学报,2006,26(3):416-419. 被引量:16
  • 3韩敏,史志伟,席剑辉.应用递归神经网络学习周期运动吸引子轨迹[J].控制理论与应用,2006,23(4):497-502. 被引量:2
  • 4胡宾,崔广柏,朱灵芝.BP神经网络预测河流月径流量[J].浙江水利科技,2007,35(2):15-16. 被引量:12
  • 5李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2003..
  • 6Storn R, Price K. Differential evolution A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11 (4): 341-359.
  • 7Das S, Suganthan P N. Differential evolution: A survey of the state of the art [J]. IEEE Trans on Evolutionary Computation, 2011, 15(1): 4-31.
  • 8Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417.
  • 9Zhang J, Sanderson A C. JADE: Adaptive differential evolution with optional external archive [J]. IEEE Trans on Evolutionary Computation, 2009, 13(5): 945-958.
  • 10Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J]. IEEE Trans on Evolutionary Computation, 2006, 10(6): 646-657.

共引文献29

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部